Suppr超能文献

最小细菌细胞中染色体组织的动态变化

Dynamics of chromosome organization in a minimal bacterial cell.

作者信息

Gilbert Benjamin R, Thornburg Zane R, Brier Troy A, Stevens Jan A, Grünewald Fabian, Stone John E, Marrink Siewert J, Luthey-Schulten Zaida

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.

出版信息

Front Cell Dev Biol. 2023 Aug 9;11:1214962. doi: 10.3389/fcell.2023.1214962. eCollection 2023.

Abstract

Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.

摘要

细胞的计算模型不能被认为是完整的,除非它们包含生命最基本的过程,即遗传物质的复制和遗传。通过创建一个计算框架,以10个碱基对的分辨率,用布朗动力学将复制的细菌染色体系统建模为聚合物,我们研究了复制过程中染色体组织的变化,并将现有的针对基因最小化细菌JCVI-syn3A的全细胞模型(WCM)的适用性扩展到整个细胞周期。为了获得逼真的细胞尺度染色体结构,我们将染色体建模为一种具有弯曲和扭转刚度的自回避均聚物,以捕捉Syn3A中双链DNA的基本力学特性。此外,环状DNA的构象必须避免与冷冻电子断层扫描中识别出的核糖体重叠。虽然Syn3A缺乏已知的在其他细菌中协调染色体分离的复杂调控系统,但其最小化的基因组保留了必需的染色体结构维持(SMC)蛋白复合物(SMC-scpAB)和拓扑异构酶。通过在我们对复制染色体的模拟中实现这些蛋白质的作用,我们发现它们本身就足以在嵌套的θ结构中实现所有世代的同时染色体分离。这支持了先前的研究,表明环挤压是细菌和真核细胞内染色体组织的一种近乎通用的机制。此外,我们分析了染色体影响下的核糖体扩散,并计算了捕捉子代间相互作用的染色体接触图。最后,我们提出了一种方法,将染色体的聚合物模型映射到Martini粗粒度表示上,以制备整个Syn3A细胞的分子动力学模型,这是对WCM预测的细胞状态进行验证的最终手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验