Suppr超能文献

细菌组蛋白 HU 的非特异性和特异性 DNA 结合模式通过不同的机制分别调节不同的生理过程。

Non-specific and specific DNA binding modes of bacterial histone, HU, separately regulate distinct physiological processes through different mechanisms.

机构信息

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.

Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.

出版信息

Mol Microbiol. 2023 Apr;119(4):439-455. doi: 10.1111/mmi.15033. Epub 2023 Feb 20.

Abstract

The histone-like protein HU plays a diverse role in bacterial physiology from the maintenance of chromosome structure to the regulation of gene transcription. HU binds DNA in a sequence-non-specific manner via two distinct binding modes: (i) random binding to any DNA through ionic bonds between surface-exposed lysine residues (K3, K18, and K83) and phosphate backbone (non-specific); (ii) preferential binding to contorted DNA of given structures containing a pair of kinks (structure-specific) through conserved proline residues (P63) that induce and/or stabilize the kinks. First, we show here that the P63-mediated structure-specific binding also requires the three lysine residues, which are needed for a non-specific binding. Second, we demonstrate that substituting P63 to alanine in HU had no impact on non-specific binding but caused differential transcription of diverse genes previously shown to be regulated by HU, such as those associated with the organonitrogen compound biosynthetic process, galactose metabolism, ribosome biogenesis, and cell adhesion. The structure-specific binding also helps create DNA supercoiling, which, in turn, may influence directly or indirectly the transcription of other genes. Our previous and current studies show that non-specific and structure-specific HU binding appear to have separate functions- nucleoid architecture and transcription regulation- which may be true in other DNA-binding proteins.

摘要

组蛋白样蛋白 HU 在细菌生理学中发挥着多样化的作用,从维持染色体结构到调节基因转录。HU 通过两种不同的结合模式与 DNA 进行非特异性结合:(i)通过表面暴露的赖氨酸残基(K3、K18 和 K83)与磷酸骨架之间的离子键,随机结合任何 DNA(非特异性);(ii)通过保守的脯氨酸残基(P63)优先结合具有一对扭结的特定结构的扭曲 DNA(结构特异性),从而诱导和/或稳定扭结。首先,我们在此表明,P63 介导的结构特异性结合也需要三个赖氨酸残基,这些残基对于非特异性结合是必需的。其次,我们证明,在 HU 中将 P63 替换为丙氨酸不会影响非特异性结合,但会导致先前显示受 HU 调节的多种基因的转录差异,例如与有机氮化合物生物合成过程、半乳糖代谢、核糖体生物发生和细胞黏附相关的基因。结构特异性结合还有助于产生 DNA 超螺旋,这反过来又可能直接或间接地影响其他基因的转录。我们之前和当前的研究表明,非特异性和结构特异性 HU 结合似乎具有独立的功能——核基质架构和转录调控——这在其他 DNA 结合蛋白中可能是真实的。

相似文献

3
HU multimerization shift controls nucleoid compaction.HU 多聚体构象变化控制着拟核的紧缩。
Sci Adv. 2016 Jul 29;2(7):e1600650. doi: 10.1126/sciadv.1600650. eCollection 2016 Jul.

本文引用的文献

2
Multiscale Dynamic Structuring of Bacterial Chromosomes.细菌染色体的多尺度动态结构
Annu Rev Microbiol. 2021 Oct 8;75:541-561. doi: 10.1146/annurev-micro-033021-113232. Epub 2021 Aug 3.
6
Architecture of the Escherichia coli nucleoid.大肠杆菌核区的结构。
PLoS Genet. 2019 Dec 12;15(12):e1008456. doi: 10.1371/journal.pgen.1008456. eCollection 2019 Dec.
9
HU multimerization shift controls nucleoid compaction.HU 多聚体构象变化控制着拟核的紧缩。
Sci Adv. 2016 Jul 29;2(7):e1600650. doi: 10.1126/sciadv.1600650. eCollection 2016 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验