Suppr超能文献

前寒武纪期间铁和氧生物地球化学循环的演化

Evolution of iron and oxygen biogeochemical cycles during the Precambrian.

作者信息

Watanabe Yasuto, Tajika Eiichi, Ozaki Kazumi

机构信息

Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan.

出版信息

Geobiology. 2023 Nov;21(6):689-707. doi: 10.1111/gbi.12571. Epub 2023 Aug 25.

Abstract

Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O and Fe during the Archean-Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe-O -P-C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O before the GOE (atmospheric pO  < 10 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO rises to ~10 -10 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO , suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.

摘要

铁(Fe)是生命必需的元素,其地球化学循环与生命和地球环境的耦合历史密切相关。累积的地质记录表明,在古元古代大气氧含量首次大幅上升(大氧化事件;GOE)之前,以及在元古代的其余时期,前寒武纪海洋中都存在含铁的水体。然而,太古宙-元古代期间氧和铁的生物地球化学循环的相互作用演化仍不明确。在此,我们开发了一个生物地球化学模型,以研究跨越GOE的铁-氧-磷-碳循环的耦合生物地球化学演化。我们的模型表明,在GOE之前(大气pO₂ < 10⁻⁵ PAL;当前大气水平),海洋铁循环对氧产生速率的变化不太敏感。当海洋的磷供应速率超过某个阈值时,GOE发生,大气pO₂ 上升到~10⁻² - 10⁻³ PAL。GOE之后,海洋亚铁(Fe(II))浓度对大气pO₂ 高度敏感,这表明元古代期间的海洋氧化还原格局可能在含铁条件和缺氧非含铁条件之间波动,大陆边缘周围有含硫化物的水体。在大气pO₂ 约为0.3% PAL的某个阈值时,Fe(II)的主要氧化途径从阳光照射的表层水中利用Fe(II)的无氧光合自养生物的活动转变为深海中的非生物过程。这伴随着氢氧化铁(Fe(III))的主要沉积位点从表层海洋转移到深海,为元古代期间观察到的铁建造的停止提供了一个合理的机理解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验