Aguilar Gabriela Travieso, Mijares Maykel Márquez, Solís-Pomar Francisco, Gutiérrez-Lazos C D, Pérez-Tijerina Eduardo G, Cruz Abel Fundora
Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba.
Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba.
J Fluoresc. 2024 Jul;34(4):1801-1810. doi: 10.1007/s10895-023-03406-w. Epub 2023 Aug 25.
A known property of quantum dots (QDs) is their characteristic luminescence, which would make it possible to detect different types of cancers after being functionalized with some type of biological molecule. For this reason, in the present investigation a methodological analysis of the physicochemical characteristics of the CdTe/ZnS core/shell QDs was carried out, using techniques such as Optical Absorbance Spectroscopy (UV-Vis), Molecular Fluorescence, Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Zeta Potential that allowed to verify the photoluminescent effectiveness of these semiconductor nanocrystals as an alternative to conventional techniques currently used for the detection of specific cancers smaller than 1 cm. The study consisted of theoretically determining the bandgap energy, the size of the nanocrystals and the molar absorptivity from the wavelength value for the maximum intensity of the excitonic peak. It was also possible to verify the maximum intensity for each sample and thus evaluate its photoluminescent response, as well as it was possible to determine the charge distribution, the hydrodynamic size and the surface composition of each quantum dot. The results obtained correspond to what has been reported in the literature, which makes them good candidates for the detection of cancer in precancerous stages.
量子点(QDs)的一个已知特性是其特征发光,在用某种生物分子进行功能化后,这将使检测不同类型的癌症成为可能。因此,在本研究中,对CdTe/ZnS核壳量子点的物理化学特性进行了方法学分析,使用了诸如光吸收光谱法(紫外-可见)、分子荧光、傅里叶变换红外光谱法(FT-IR)、动态光散射(DLS)、X射线衍射(XRD)、透射电子显微镜(TEM)和zeta电位等技术,这些技术能够验证这些半导体纳米晶体作为目前用于检测小于1厘米的特定癌症的传统技术的替代方法的光致发光有效性。该研究包括从激子峰最大强度的波长值理论上确定带隙能量、纳米晶体的尺寸和摩尔吸光率。还能够验证每个样品的最大强度,从而评估其光致发光响应,并且还能够确定每个量子点的电荷分布、流体动力学尺寸和表面组成。所获得的结果与文献中报道的结果一致,这使得它们成为癌前阶段癌症检测的良好候选者。