Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Indiana University School of Medicine, Indianapolis, 46202, IN, USA.
J Neurosci Methods. 2023 Oct 1;398:109954. doi: 10.1016/j.jneumeth.2023.109954. Epub 2023 Aug 23.
Disabling hearing loss affects nearly 466 million people worldwide (World Health Organization). The auditory brainstem response (ABR) is the most common non-invasive clinical measure of evoked potentials, e.g., as an objective measure for universal newborn hearing screening. In research, the ABR is widely used for estimating hearing thresholds and cochlear synaptopathy in animal models of hearing loss. The ABR contains multiple waves representing neural activity across different peripheral auditory pathway stages, which arise within the first 10 ms after stimulus onset. Multi-channel (e.g., 32 or higher) caps provide robust measures for a wide variety of EEG applications for the study of human hearing. However, translational studies using preclinical animal models typically rely on only a few subdermal electrodes.
We evaluated the feasibility of a 32-channel rodent EEG mini-cap for improving the reliability of ABR measures in chinchillas, a common model of human hearing.
After confirming initial feasibility, a systematic experimental design tested five potential sources of variability inherent to the mini-cap methodology. We found each source of variance minimally affected mini-cap ABR waveform morphology, thresholds, and wave-1 amplitudes.
The mini-cap methodology was statistically more robust and less variable than the conventional subdermal-needle methodology, most notably when analyzing ABR thresholds. Additionally, fewer repetitions were required to produce a robust ABR response when using the mini-cap.
These results suggest the EEG mini-cap can improve translational studies of peripheral auditory evoked responses. Future work will evaluate the potential of the mini-cap to improve the reliability of more centrally evoked (e.g., cortical) EEG responses.
全球有近 4.66 亿人患有听力障碍(世界卫生组织)。听觉脑干反应(ABR)是最常见的非侵入性临床诱发电位测量方法,例如,作为新生儿普遍听力筛查的客观测量方法。在研究中,ABR 广泛用于估计听力阈值和耳蜗突触病,作为听力损失动物模型的研究。ABR 包含多个波,代表刺激开始后前 10 毫秒内不同外周听觉通路阶段的神经活动。多通道(例如 32 通道或更高)帽提供了广泛的 EEG 应用的可靠测量,用于研究人类听力。然而,使用临床前动物模型的转化研究通常仅依赖于少数皮下电极。
我们评估了 32 通道啮齿动物 EEG 迷你帽在提高南美栗鼠 ABR 测量可靠性方面的可行性,南美栗鼠是人类听力的常见模型。
在确认初步可行性后,系统的实验设计测试了迷你帽方法固有的五个潜在变异性来源。我们发现每个方差源对迷你帽 ABR 波形形态、阈值和波 1 幅度的影响最小。
与传统的皮下针方法相比,迷你帽方法在统计学上更稳健,变异性更小,尤其是在分析 ABR 阈值时。此外,当使用迷你帽时,产生稳健的 ABR 响应所需的重复次数更少。
这些结果表明 EEG 迷你帽可以改善外周听觉诱发电应对的转化研究。未来的工作将评估迷你帽提高更中心诱发(例如皮质)EEG 反应可靠性的潜力。