Suppr超能文献

模糊方法在评估和选择相关对象、特征及其范围中的应用。

Application of the Fuzzy Approach for Evaluating and Selecting Relevant Objects, Features, and Their Ranges.

作者信息

Paja Wiesław

机构信息

Institute of Computer Science, College of Natural Sciences, University of Rzeszów, Rejtana Str. 16C, 35-959 Rzeszów, Poland.

出版信息

Entropy (Basel). 2023 Aug 17;25(8):1223. doi: 10.3390/e25081223.

Abstract

Relevant attribute selection in machine learning is a key aspect aimed at simplifying the problem, reducing its dimensionality, and consequently accelerating computation. This paper proposes new algorithms for selecting relevant features and evaluating and selecting a subset of relevant objects in a dataset. Both algorithms are mainly based on the use of a fuzzy approach. The research presented here yielded preliminary results of a new approach to the problem of selecting relevant attributes and objects and selecting appropriate ranges of their values. Detailed results obtained on the Sonar dataset show the positive effects of this approach. Moreover, the observed results may suggest the effectiveness of the proposed method in terms of identifying a subset of truly relevant attributes from among those identified by traditional feature selection methods.

摘要

机器学习中的相关属性选择是一个关键方面,旨在简化问题、降低其维度并因此加速计算。本文提出了用于选择相关特征以及评估和选择数据集中相关对象子集的新算法。这两种算法主要基于模糊方法的使用。这里展示的研究得出了一种针对选择相关属性和对象以及选择其值的合适范围问题的新方法的初步结果。在声纳数据集上获得的详细结果显示了这种方法的积极效果。此外,观察到的结果可能表明所提出的方法在从传统特征选择方法所识别的属性中识别出真正相关的属性子集方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec61/10453594/b9784781ada2/entropy-25-01223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验