School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Sensors (Basel). 2023 Aug 21;23(16):7292. doi: 10.3390/s23167292.
Wi-Fi signals are ubiquitous and provide a convenient, covert, and non-invasive means of recognizing human activity, which is particularly useful for healthcare monitoring. In this study, we investigate a score-level fusion structure for human activity recognition using the Wi-Fi channel state information (CSI) signals. The raw CSI signals undergo an important preprocessing stage before being classified using conventional classifiers at the first level. The output scores of two conventional classifiers are then fused via an analytic network that does not require iterative search for learning. Our experimental results show that the fusion provides good generalization and a shorter learning processing time compared with state-of-the-art networks.
Wi-Fi 信号无处不在,为识别人类活动提供了一种方便、隐蔽和非侵入性的手段,这对于医疗保健监测特别有用。在这项研究中,我们研究了一种使用 Wi-Fi 信道状态信息 (CSI) 信号的人类活动识别的得分级融合结构。原始 CSI 信号在使用传统分类器进行分类之前要经过一个重要的预处理阶段。然后,通过一个不需要迭代搜索学习的分析网络融合两个传统分类器的输出得分。我们的实验结果表明,与最先进的网络相比,融合提供了更好的泛化能力和更短的学习处理时间。