Suppr超能文献

Twitter社交媒体平台上仇恨言论传播者的特征及其行为的比较研究。

A comparative study of the characteristics of hate speech propagators and their behaviours over Twitter social media platform.

作者信息

Perera Suresha, Meedin Nadeera, Caldera Maneesha, Perera Indika, Ahangama Supunmali

机构信息

Department of Computer Science and Engineering, University of Moratuwa, Katubedda, Sri Lanka.

Department of Information Technology, University of Moratuwa, Katubedda, Sri Lanka.

出版信息

Heliyon. 2023 Aug 11;9(8):e19097. doi: 10.1016/j.heliyon.2023.e19097. eCollection 2023 Aug.

Abstract

The internet and social media have facilitated diverse communication genres, enabling widespread and rapid opinions-sharing. However, hate speech imposes a contemporary challenge on individuals and communities, given the user anonymity, freedom, and inadequate regulation. Therefore, it is imperative to identify the perpetrators responsible for spreading hate content and examine their behaviour to prevent and mitigate the negative impact. This study aimed to compare the characteristics of hate speech propagators and their behaviour with non-hate users on Twitter for the first time in Sri Lanka. The intrinsic and extrinsic profile features were extensively analyzed, employing Sinhala and English text analysis techniques. A corpus of 102882 posts from 530 hate and non-hate Twitter user profiles was selected for the study. This study investigates the unique characteristics of hate speech propagators and non-hate users by examining their profile self-presentation, conducting social network analysis, and analyzing sentiment and emotion through linguistic analysis. Hate users often refrained from expression, with infrequent account verification and geotagging. They tend to have a higher follower and following counts and more favourites, group memberships, and statuses than non-hate users. However, general Twitter user engagement with hate users was significantly low, with fewer likes, retweets, and replies. The limited involvement of normal users with hate content indicates that audiences can be effectively utilized to combat hate speech. The sentiment analysis between languages showed polarisation of negative tweets towards Sinhala, with the synergistic effect of English language users using positive sentiment to spread hate content. The novel findings shed light on the characteristics of hate users, facilitating their early detection and moderation of hate speech and aiding in developing algorithms to rank and categorize hate users using artificial intelligence. Moreover, it can be used for policy reforms, awareness programmes, and building social cohesion while combating hate speech.

摘要

互联网和社交媒体促进了多种交流形式,使观点能够广泛且迅速地分享。然而,鉴于用户的匿名性、自由度以及监管不足,仇恨言论给个人和社区带来了当代挑战。因此,必须找出传播仇恨内容的肇事者,并审视他们的行为,以预防和减轻负面影响。本研究旨在首次在斯里兰卡比较推特上仇恨言论传播者的特征及其行为与非仇恨用户的差异。采用僧伽罗语和英语文本分析技术,对内在和外在的个人资料特征进行了广泛分析。本研究选取了来自530个仇恨和非仇恨推特用户资料的102882条推文作为语料库。本研究通过检查他们的个人资料自我展示、进行社交网络分析以及通过语言分析来分析情感和情绪,调查仇恨言论传播者和非仇恨用户的独特特征。仇恨用户往往避免表达,账户验证和地理标记较少。他们的关注者和被关注者数量往往比非仇恨用户更多,点赞、群组成员身份和状态也更多。然而,推特普通用户与仇恨用户的互动明显较少,点赞、转发和回复都更少。普通用户对仇恨内容的参与度有限,这表明可以有效地利用受众来打击仇恨言论。语言之间的情感分析显示,负面推文对僧伽罗语存在两极分化,英语用户利用积极情感来传播仇恨内容起到了协同作用。这些新发现揭示了仇恨用户的特征,有助于早期发现和监管仇恨言论,并有助于开发利用人工智能对仇恨用户进行排名和分类的算法。此外,它可用于政策改革、提高认识计划以及在打击仇恨言论的同时增强社会凝聚力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53a5/10457529/e2ad2bae989a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验