Suppr超能文献

做出正确选择的挑战:癌症免疫疗法时代的患者化身。

The challenge of making the right choice: patient avatars in the era of cancer immunotherapies.

机构信息

Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany.

Department of Internal Medicine II, University Hospital Center Schleswig-Holstein, Kiel, Germany.

出版信息

Front Immunol. 2023 Aug 10;14:1237565. doi: 10.3389/fimmu.2023.1237565. eCollection 2023.

Abstract

Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.

摘要

免疫疗法是对抗癌症的关键治疗策略。人们采用多种方法来激活针对肿瘤的免疫并克服肿瘤免疫逃逸。肿瘤细胞与其肿瘤(免疫)微环境(T(I)ME)之间的动态相互作用给创建合适的模型系统带来了重大挑战。然而,这些模型系统对于深入了解肿瘤(免疫)生物学以及准确开发和测试可以成功转化为临床应用的免疫治疗方法是必要的。已经建立了几种模型系统,并将其推进到所谓的患者虚拟人,以模拟患者的肿瘤生物学。所有模型都有其优点,但也有缺点,这突出表明有必要注意定义患者虚拟人将被用于的基本原理和要求。在这里,我们简要概述了用于肿瘤(免疫)生物学分析以及评估免疫治疗剂的肿瘤模型系统的当前状态。最后,我们提出了进一步发展的建议,以使患者虚拟人成为测试和预测免疫治疗策略的补充工具,以实现肿瘤治疗的个体化。

相似文献

1
The challenge of making the right choice: patient avatars in the era of cancer immunotherapies.
Front Immunol. 2023 Aug 10;14:1237565. doi: 10.3389/fimmu.2023.1237565. eCollection 2023.
2
Immuno-oncology-101: overview of major concepts and translational perspectives.
Semin Cancer Biol. 2018 Oct;52(Pt 2):1-11. doi: 10.1016/j.semcancer.2018.02.005. Epub 2018 Feb 8.
3
3D Tumor Models and Their Use for the Testing of Immunotherapies.
Front Immunol. 2020 Dec 10;11:603640. doi: 10.3389/fimmu.2020.603640. eCollection 2020.
5
Bladder Cancer Patient-derived Organoids and Avatars for Personalized Cancer Discovery.
Eur Urol Focus. 2022 May;8(3):657-659. doi: 10.1016/j.euf.2022.07.006. Epub 2022 Jul 30.
6
The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
Front Immunol. 2020 Jul 30;11:1680. doi: 10.3389/fimmu.2020.01680. eCollection 2020.
7
Tumor-on-a-chip platforms to study cancer-immune system crosstalk in the era of immunotherapy.
Lab Chip. 2021 Jan 21;21(2):234-253. doi: 10.1039/d0lc00799d. Epub 2020 Dec 14.
8
Organ-on-a-chip models for development of cancer immunotherapies.
Cancer Immunol Immunother. 2023 Dec;72(12):3971-3983. doi: 10.1007/s00262-023-03572-7. Epub 2023 Nov 3.
9
Patient-derived preclinical models to develop immunotherapies.
Mol Oncol. 2023 Jul;17(7):1169-1172. doi: 10.1002/1878-0261.13470. Epub 2023 Jun 15.
10
Bioinformatics Approaches to Profile the Tumor Microenvironment for Immunotherapeutic Discovery.
Curr Pharm Des. 2017;23(32):4716-4725. doi: 10.2174/1381612823666170710154936.

引用本文的文献

1
Establishing and Maintaining 3D Organoid Cultures From Human Fallopian Tube Epithelium.
Bio Protoc. 2025 Aug 20;15(16):e5412. doi: 10.21769/BioProtoc.5412.
2
Deciphering permissivity of human tumor ecosystems to oncolytic viruses.
Oncogene. 2025 May;44(16):1069-1077. doi: 10.1038/s41388-025-03357-5. Epub 2025 Mar 27.
3
Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy.
Transl Oncol. 2025 Jan;51:102226. doi: 10.1016/j.tranon.2024.102226. Epub 2024 Dec 1.
4
Inhibition of ADAM17 increases the cytotoxic effect of cisplatin in cervical spheroids and organoids.
Front Oncol. 2024 Sep 2;14:1432239. doi: 10.3389/fonc.2024.1432239. eCollection 2024.

本文引用的文献

1
Using patient-derived tumor organoids from common epithelial cancers to analyze personalized T-cell responses to neoantigens.
Cancer Immunol Immunother. 2023 Oct;72(10):3149-3162. doi: 10.1007/s00262-023-03476-6. Epub 2023 Jun 27.
2
Human disease models in drug development.
Nat Rev Bioeng. 2023 May 11:1-15. doi: 10.1038/s44222-023-00063-3.
3
Dual CSF1R inhibition and CD40 activation demonstrates anti-tumor activity in a 3D macrophage- HER2 breast cancer spheroid model.
Front Bioeng Biotechnol. 2023 Jun 6;11:1159819. doi: 10.3389/fbioe.2023.1159819. eCollection 2023.
4
Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized Mice.
Cancers (Basel). 2023 May 30;15(11):2989. doi: 10.3390/cancers15112989.
5
Patient-derived organoids as a platform for drug screening in metastatic colorectal cancer.
Front Bioeng Biotechnol. 2023 May 22;11:1190637. doi: 10.3389/fbioe.2023.1190637. eCollection 2023.
6
Drug screening at single-organoid resolution via bioprinting and interferometry.
Nat Commun. 2023 Jun 6;14(1):3168. doi: 10.1038/s41467-023-38832-8.
7
Next Generation CD44v6-Specific CAR-NK Cells Effective against Triple Negative Breast Cancer.
Int J Mol Sci. 2023 May 20;24(10):9038. doi: 10.3390/ijms24109038.
10
The tumor stroma influences immune cell distribution and recruitment in a PDAC-on-a-chip model.
Front Immunol. 2023 May 2;14:1155085. doi: 10.3389/fimmu.2023.1155085. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验