Tada Tsukasa
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.
J Phys Chem A. 2023 Sep 7;127(35):7297-7308. doi: 10.1021/acs.jpca.3c02195. Epub 2023 Aug 28.
We report quantum chemical studies on possible molecular devices working based on electric field-induced intramolecular charge transfer (EFIMCT). In the case of donor-acceptor (DA)-type molecular systems, intramolecular charge transfer (IMCT) can be induced by applying the external electric field to molecular systems along the charge transport direction, providing a possible switching mechanism which does not depend upon the electron-phonon coupling effect and is different from the negative differential resistance mechanism observed in the well-known NO-substituted phenylene ethynylene oligomers. When the EFIMCT proceeds, the molecular systems have strong static electron correlation effects, where the standard nonequilibrium Green's function-density functional theory (DFT) approach cannot be applied to the molecular junction. As a first step toward practical switching devices, we do quantum chemical studies on the EFIMCT in such molecular systems as an isolated molecule, instead of using the electrode-junction-electrode open quantum system model. A prototype molecule P1 is designed as a tentative candidate molecule where the EFIMCT can proceed. The complete active space self-consistent field (CASSCF) molecular orbital calculations on P1 indicate that the EFIMCT can proceed at the external electric field intensity of 0.003 au, corresponding to about 2.25 V bias voltage. This calculated result strongly suggests that the development of this type of switching devices working at practically low bias voltage is feasible if the molecular system is properly designed. Broken symmetry unrestricted Hartree-Fock and spin-polarized Kohn-Sham DFT calculations also qualitatively reproduce the CASSCF results on P1, to some extent, indicating that these approaches can be employed for rough estimations on the EFIMCT such as the first screening of a large quantity of candidate molecules for this type of molecular devices. The possibility of molecular memory devices based on the EFIMCT is also discussed by analyzing the ground and excited potential energy surface model. Remaining challenges to develop practical molecular devices are discussed.
我们报道了基于电场诱导分子内电荷转移(EFIMCT)工作的可能分子器件的量子化学研究。在供体-受体(DA)型分子体系中,通过沿电荷传输方向对分子体系施加外部电场,可以诱导分子内电荷转移(IMCT),从而提供一种可能的开关机制,该机制不依赖于电子-声子耦合效应,且不同于在著名的NO取代亚苯基乙炔低聚物中观察到的负微分电阻机制。当EFIMCT发生时,分子体系具有很强的静态电子相关效应,此时标准的非平衡格林函数-密度泛函理论(DFT)方法不能应用于分子结。作为迈向实际开关器件的第一步,我们对这种分子体系中的EFIMCT进行量子化学研究,研究对象是孤立分子,而不是使用电极-结-电极开放量子系统模型。设计了一个原型分子P1作为EFIMCT可能发生的试探性候选分子。对P1进行的完全活性空间自洽场(CASSCF)分子轨道计算表明,在0.003 au的外部电场强度下EFIMCT可以发生,这对应于约2.25 V的偏置电压。该计算结果有力地表明,如果分子体系设计得当,开发这种在实际低偏置电压下工作的开关器件是可行的。破缺对称性无限制Hartree-Fock和自旋极化Kohn-Sham DFT计算在一定程度上也定性地重现了P1的CASSCF结果,表明这些方法可用于对EFIMCT进行粗略估计,例如对这类分子器件的大量候选分子进行初步筛选。通过分析基态和激发态势能面模型,还讨论了基于EFIMCT的分子存储器件的可能性。讨论了开发实际分子器件仍面临的挑战。