Suppr超能文献

基于常规血液生物标志物的早期胰腺癌预测模型。

Prediction Model for Early-Stage Pancreatic Cancer Using Routinely Measured Blood Biomarkers.

机构信息

Department of Surgery, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, the Netherlands.

Laboratory of Medical Oncology, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.

出版信息

JAMA Netw Open. 2023 Aug 1;6(8):e2331197. doi: 10.1001/jamanetworkopen.2023.31197.

Abstract

IMPORTANCE

Accurate risk prediction models using routinely measured biomarkers-eg, carbohydrate antigen 19-9 (CA19-9) and bilirubin serum levels-for pancreatic cancer could facilitate early detection of pancreatic cancer and prevent potentially unnecessary diagnostic tests for patients at low risk. An externally validated model using CA19-9 and bilirubin serum levels in a larger cohort of patients with pancreatic cancer or benign periampullary diseases is needed.

OBJECTIVE

To assess the discrimination, calibration, and clinical utility of a prediction model using readily available blood biomarkers (carbohydrate antigen 19-9 [CA19-9] and bilirubin) to distinguish early-stage pancreatic cancer from benign periampullary diseases.

DESIGN, SETTING, AND PARTICIPANTS: This diagnostic study used data from 4 academic hospitals in Italy, the Netherlands, and the UK on adult patients with pancreatic cancer or benign periampullary disease treated from 2014 to 2022. Analyses were conducted from September 2022 to February 2023.

EXPOSURES

Serum levels of CA19-9 and bilirubin from samples collected at diagnosis and before start of any medical intervention.

MAIN OUTCOMES AND MEASURES

Discrimination (measured by the area under the curve [AUC]), calibration, and clinical utility of the prediction model and the biomarkers, separately.

RESULTS

The study sample comprised 249 patients in the development cohort (mean [SD] age at diagnosis, 67 [11] years; 112 [45%] female individuals), and 296 patients in the validation cohort (mean [SD] age at diagnosis, 68 [12] years; 157 [53%] female individuals). At external validation, the prediction model showed an AUC of 0.89 (95% CI, 0.84-0.93) for early-stage pancreatic cancer vs benign periampullary diseases, and outperformed CA19-9 (difference in AUC [ΔAUC], 0.10; 95% CI, 0.06-0.14; P < .001) and bilirubin (∆AUC, 0.07; 95% CI, 0.02-0.12; P = .004). In the subset of patients without elevated tumor marker levels (CA19-9 <37 U/mL), the model showed an AUC of 0.84 (95% CI, 0.77-0.92). At a risk threshold of 30%, decision curve analysis indicated that performing biopsies based on the prediction model was equivalent to reducing the biopsy procedure rate by 6% (95% CI, 1%-11%), without missing early-stage pancreatic cancer in patients.

CONCLUSIONS AND RELEVANCE

In this diagnostic study of patients with pancreatic cancer or benign periampullary diseases, an easily applicable risk score showed high accuracy for distinguishing early-stage pancreatic cancer from benign periampullary diseases. This model could be used to assess the added diagnostic and clinical value of novel biomarkers and prevent potentially unnecessary invasive diagnostic procedures for patients at low risk.

摘要

重要性

使用常规测量的生物标志物(例如,癌抗原 19-9(CA19-9)和胆红素血清水平)准确预测胰腺癌的风险,有助于早期发现胰腺癌,并防止低风险患者进行潜在的不必要的诊断性检查。需要在更大的胰腺癌或良性胰周疾病患者队列中使用 CA19-9 和胆红素血清水平验证外部验证的模型。

目的

评估使用现成的血液生物标志物(CA19-9 和胆红素)区分早期胰腺癌和良性胰周疾病的预测模型的区分度、校准度和临床实用性。

设计、地点和参与者:这项诊断研究使用了来自意大利、荷兰和英国的 4 家学术医院的成年患者数据,这些患者在 2014 年至 2022 年期间因患有胰腺癌或良性胰周疾病而接受治疗。分析于 2022 年 9 月至 2023 年 2 月进行。

暴露

诊断时和开始任何医疗干预前采集的 CA19-9 和胆红素血清水平。

主要结局和测量指标

预测模型和生物标志物的单独区分度(通过曲线下面积 [AUC] 衡量)、校准度和临床实用性。

结果

研究样本包括来自发展队列的 249 名患者(诊断时的平均[标准差]年龄为 67[11]岁;112[45%]名女性)和验证队列的 296 名患者(诊断时的平均[标准差]年龄为 68[12]岁;157[53%]名女性)。在外部验证中,预测模型在区分早期胰腺癌与良性胰周疾病时,AUC 为 0.89(95%CI,0.84-0.93),优于 CA19-9(AUC 差值[ΔAUC],0.10;95%CI,0.06-0.14;P < 0.001)和胆红素(∆AUC,0.07;95%CI,0.02-0.12;P = 0.004)。在肿瘤标志物水平未升高的患者亚组(CA19-9<37 U/mL)中,该模型的 AUC 为 0.84(95%CI,0.77-0.92)。在风险阈值为 30%的情况下,决策曲线分析表明,根据预测模型进行活检相当于将活检程序的比例降低 6%(95%CI,1%-11%),同时不会遗漏低风险患者的早期胰腺癌。

结论和相关性

在这项对胰腺癌或良性胰周疾病患者的诊断研究中,一种易于应用的风险评分在区分早期胰腺癌和良性胰周疾病方面具有较高的准确性。该模型可用于评估新型生物标志物的附加诊断和临床价值,并防止低风险患者进行潜在的不必要的有创诊断性检查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75ed/10463099/1b53483c61f0/jamanetwopen-e2331197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验