Suppr超能文献

一种自动化神经内科患者出院小结住院流程的方法。

A method to automate the discharge summary hospital course for neurology patients.

机构信息

Cornell Tech, New York, NY 10044, United States.

Abstractive Health, New York, NY 10022, United States.

出版信息

J Am Med Inform Assoc. 2023 Nov 17;30(12):1995-2003. doi: 10.1093/jamia/ocad177.

Abstract

OBJECTIVE

Generation of automated clinical notes has been posited as a strategy to mitigate physician burnout. In particular, an automated narrative summary of a patient's hospital stay could supplement the hospital course section of the discharge summary that inpatient physicians document in electronic health record (EHR) systems. In the current study, we developed and evaluated an automated method for summarizing the hospital course section using encoder-decoder sequence-to-sequence transformer models.

MATERIALS AND METHODS

We fine-tuned BERT and BART models and optimized for factuality through constraining beam search, which we trained and tested using EHR data from patients admitted to the neurology unit of an academic medical center.

RESULTS

The approach demonstrated good ROUGE scores with an R-2 of 13.76. In a blind evaluation, 2 board-certified physicians rated 62% of the automated summaries as meeting the standard of care, which suggests the method may be useful clinically.

DISCUSSION AND CONCLUSION

To our knowledge, this study is among the first to demonstrate an automated method for generating a discharge summary hospital course that approaches a quality level of what a physician would write.

摘要

目的

生成自动化的临床记录被认为是减轻医生倦怠的一种策略。具体来说,患者住院期间的自动叙述总结可以补充住院医师在电子健康记录(EHR)系统中记录的出院总结中的住院过程部分。在本研究中,我们开发并评估了一种使用编码器-解码器序列到序列转换器模型总结住院过程部分的自动化方法。

材料和方法

我们使用来自学术医疗中心神经科住院患者的 EHR 数据对 BERT 和 BART 模型进行微调,并通过约束束搜索进行事实性优化,然后对其进行训练和测试。

结果

该方法的 ROUGE 得分很好,R-2 为 13.76。在一项盲法评估中,2 名 board-certified 医师将 62%的自动总结评为符合护理标准,这表明该方法在临床上可能有用。

讨论和结论

据我们所知,这项研究是首批证明能够生成接近医生书写水平的出院总结住院过程的自动化方法之一。

相似文献

4
Leveraging Summary Guidance on Medical Report Summarization.利用医疗报告总结中的指导意见。
IEEE J Biomed Health Inform. 2023 Oct;27(10):5066-5075. doi: 10.1109/JBHI.2023.3304376. Epub 2023 Oct 5.

引用本文的文献

3
Evaluating large language models for drafting emergency department encounter summaries.评估大型语言模型用于起草急诊科就诊总结。
PLOS Digit Health. 2025 Jun 17;4(6):e0000899. doi: 10.1371/journal.pdig.0000899. eCollection 2025 Jun.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验