Cornell Tech, New York, NY 10044, United States.
Abstractive Health, New York, NY 10022, United States.
J Am Med Inform Assoc. 2023 Nov 17;30(12):1995-2003. doi: 10.1093/jamia/ocad177.
Generation of automated clinical notes has been posited as a strategy to mitigate physician burnout. In particular, an automated narrative summary of a patient's hospital stay could supplement the hospital course section of the discharge summary that inpatient physicians document in electronic health record (EHR) systems. In the current study, we developed and evaluated an automated method for summarizing the hospital course section using encoder-decoder sequence-to-sequence transformer models.
We fine-tuned BERT and BART models and optimized for factuality through constraining beam search, which we trained and tested using EHR data from patients admitted to the neurology unit of an academic medical center.
The approach demonstrated good ROUGE scores with an R-2 of 13.76. In a blind evaluation, 2 board-certified physicians rated 62% of the automated summaries as meeting the standard of care, which suggests the method may be useful clinically.
To our knowledge, this study is among the first to demonstrate an automated method for generating a discharge summary hospital course that approaches a quality level of what a physician would write.
生成自动化的临床记录被认为是减轻医生倦怠的一种策略。具体来说,患者住院期间的自动叙述总结可以补充住院医师在电子健康记录(EHR)系统中记录的出院总结中的住院过程部分。在本研究中,我们开发并评估了一种使用编码器-解码器序列到序列转换器模型总结住院过程部分的自动化方法。
我们使用来自学术医疗中心神经科住院患者的 EHR 数据对 BERT 和 BART 模型进行微调,并通过约束束搜索进行事实性优化,然后对其进行训练和测试。
该方法的 ROUGE 得分很好,R-2 为 13.76。在一项盲法评估中,2 名 board-certified 医师将 62%的自动总结评为符合护理标准,这表明该方法在临床上可能有用。
据我们所知,这项研究是首批证明能够生成接近医生书写水平的出院总结住院过程的自动化方法之一。