Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
Water Res. 2023 Oct 1;244:120503. doi: 10.1016/j.watres.2023.120503. Epub 2023 Aug 19.
Microplastics (MPs) are ubiquitously distributed in freshwater systems and they can determine the environmental fate of organic pollutants (OPs) via sorption interaction. However, the diverse physicochemical properties of MPs and the wide range of OP species make a deeper understanding of sorption mechanisms challenging. Traditional isotherm-based sorption models are limited in their universality since they normally only consider the nature and characteristics of either sorbents or sorbates individually. Therefore, only specific equilibrium concentrations or specific sorption isotherms can be used to predict sorption. To systematically evaluate and predict OP sorption under the influence of both MPs and OPs properties, we collected 475 sorption data from peer-reviewed publications and developed a poly-parameter-linear-free-energy-relationship-embedded machine learning method to analyze the collected sorption datasets. Models of different algorithms were compared, and the genetic algorithm and support vector machine hybrid model displayed the best prediction performance (R of 0.93 and root-mean-square-error of 0.07). Finally, comparison results of three feature importance analysis tools (forward step wise method, Shapley method, and global sensitivity analysis) showed that chemical properties of MPs, excess molar refraction, and hydrogen-bonding interaction of OPs contribute the most to sorption, reflecting the dominant sorption mechanisms of hydrophobic partitioning, hydrogen bond formation, and π-π interaction, respectively. This study presents a novel sorbate-sorbent-based ML model with a wide applicability to expand our capacity in understanding the complicated process and mechanism of OP sorption on MPs.
微塑料(MPs)广泛分布于淡水系统中,它们可以通过吸附相互作用来决定有机污染物(OPs)的环境归宿。然而,由于 MPs 的物理化学性质多样,以及 OP 种类繁多,使得深入了解吸附机制具有挑战性。传统的基于等温线的吸附模型在通用性方面存在局限性,因为它们通常只考虑吸附剂或吸附质的性质。因此,只能使用特定的平衡浓度或特定的吸附等温线来预测吸附。为了系统地评估和预测 MPs 和 OPs 性质共同作用下的 OP 吸附,我们从同行评议的出版物中收集了 475 个吸附数据,并开发了一种多参数线性自由能关系嵌入机器学习方法来分析收集的吸附数据集。比较了不同算法的模型,遗传算法和支持向量机混合模型显示出最佳的预测性能(R 为 0.93,均方根误差为 0.07)。最后,三种特征重要性分析工具(逐步向前法、Shapley 法和全局敏感性分析法)的比较结果表明,MPs 的化学性质、过剩摩尔折射度和 OPs 的氢键相互作用对吸附的贡献最大,分别反映了疏水分配、氢键形成和π-π相互作用的主要吸附机制。本研究提出了一种基于新型吸附质-吸附剂的 ML 模型,具有广泛的适用性,可以提高我们对 MPs 上 OP 吸附的复杂过程和机制的理解能力。