Birkun Alexei A, Gautam Adhish
Department of General Surgery, Anaesthesiology, Resuscitation and Emergency Medicine, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation.
Regional Government Hospital; Una, Himachal Pradesh, India.
Curr Probl Cardiol. 2024 Jan;49(1 Pt A):102048. doi: 10.1016/j.cpcardiol.2023.102048. Epub 2023 Aug 26.
The ability of the cutting-edge large language model-powered chatbots to generate human-like answers to user questions hypothetically could be utilized for providing real-time advice on first aid for witnesses of cardiovascular emergencies. This study aimed to evaluate quality of the chatbot responses to inquiries on help in heart attack. The study simulated interrogation of the new Bing chatbot (Microsoft Corporation, USA) with the "heart attack what to do" prompt coming from 3 countries, the Gambia, India and the USA. The chatbot responses (20 per country) were evaluated for congruence with the International First Aid, Resuscitation, and Education Guidelines 2020 using a checklist. For all user inquiries, the chatbot provided answers containing some guidance on first aid. However, the responses commonly left out some potentially life-saving instructions, for instance to encourage the person to stop physical activity, to take antianginal medication, or to start cardiopulmonary resuscitation for unresponsive abnormally breathing person. Mean percentage of the responses having full congruence with the checklist criteria varied from 7.3 for India to 16.8 for the USA. A quarter of responses for the Gambia and the USA, and 45.0% for India contained superfluous guidelines-inconsistent directives. The chatbot advice on help in heart attack has omissions, inaccuracies and misleading instructions, and therefore the chatbot cannot be recommended as a credible source of information on first aid. Active research and organizational efforts are needed to mitigate the risk of uncontrolled misinformation and establish measures for guaranteeing trustworthiness of the chatbot-mediated counseling.
前沿的基于大语言模型的聊天机器人理论上能够针对用户问题生成类似人类的回答,这一能力可用于为心血管急症目击者提供急救实时建议。本研究旨在评估聊天机器人对心脏病急救相关询问的回答质量。该研究模拟了来自冈比亚、印度和美国三个国家的用户以“心脏病发作该怎么办”为提示对新版必应聊天机器人(美国微软公司)进行的询问。使用一份清单对聊天机器人的回答(每个国家20条)与《2020年国际急救、复苏和教育指南》的一致性进行了评估。对于所有用户询问,聊天机器人都提供了包含一些急救指导的回答。然而,这些回答通常遗漏了一些可能救命的指示,例如鼓励患者停止体力活动、服用抗心绞痛药物,或者对无反应且呼吸异常的人开始心肺复苏。与清单标准完全一致的回答的平均百分比从印度的7.3%到美国的16.8%不等。冈比亚和美国四分之一的回答以及印度45.0%的回答包含多余的、与指南不一致的指示。聊天机器人关于心脏病急救的建议存在遗漏、不准确和误导性指示,因此不能将该聊天机器人推荐为可靠的急救信息来源。需要积极开展研究和组织工作,以降低不受控制的错误信息风险,并建立保障聊天机器人介导咨询可信度的措施。