Suppr超能文献

动态列线图预测甲状旁腺切除术前饥饿骨综合征。

Dynamic nomogram for predicting hungry bone syndrome before parathyroidectomy.

机构信息

Jinzhou Medical University Postgraduate Training Base (Jinzhou Central Hospital), Jinzhou City, Liaoning Province, China.

Anhui University of Science and Technology, Huainan City, Anhui Province, China.

出版信息

Endocrine. 2024 Jan;83(1):196-204. doi: 10.1007/s12020-023-03493-6. Epub 2023 Aug 28.

Abstract

PURPOSE

The objective of this study was to develop a dependable and uncomplicated prediction model utilizing clinical information readily accessible to patients before surgery. This model aimed to assess the likelihood of hungry bone syndrome occurrence in post-surgery patients with secondary hyperparathyroidism (SHPT), and to assist clinicians in adjusting treatment plans promptly.

METHODS

In this study, we constructed an online nomogram utilizing independent variables determined through multiple logistic regression to predict the probability of HBS occurrence after parathyroidectomy in patients with secondary hyperparathyroidism. To evaluate the precision and dependability of the nomogram, we used receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

RESULTS

Multivariate logistic regression analyses on 136 eligible patients identified age, parathyroid hormone (PTH), and blood calcium as independent HBS risk factors, which were then integrated into the nomogram. The area under ROC curve demonstrated the nomogram's strong predictive accuracy. The calibration curve demonstrates consistency between the model's prediction probability and observed probability, reflecting high prediction accuracy of the nomogram. Dynamic nomograms were found to hold significant practical clinical value as demonstrated by clinical decision analysis. It can be accessed on https://min115.shinyapps.io/dynnomapp/ .

CONCLUSION

In patients with secondary hyperparathyroidism, the dynamic nomogram based on age, parathyroid hormone, and blood calcium can more accurately predict the likelihood of HBS after parathyroidectomy, allowing doctors to make clinical decisions more quickly and adjust treatment plans in a timely manner to reduce the incidence of HBS.

摘要

目的

本研究旨在开发一种可靠且简便的预测模型,利用患者术前即可获得的临床信息。该模型旨在评估继发性甲状旁腺功能亢进(SHPT)术后患者发生饥饿骨综合征的可能性,并帮助临床医生及时调整治疗计划。

方法

本研究利用多因素逻辑回归确定的独立变量,构建了用于预测继发性甲状旁腺功能亢进患者甲状旁腺切除术后发生 HBS 概率的在线诺模图。为评估该诺模图的精确性和可靠性,我们采用了接受者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)。

结果

对 136 例合格患者进行多因素逻辑回归分析,确定年龄、甲状旁腺激素(PTH)和血钙是 HBS 的独立风险因素,这些因素被整合到诺模图中。ROC 曲线下面积表明该诺模图具有较强的预测准确性。校准曲线表明模型预测概率与实际观察概率之间的一致性,反映了诺模图的高预测准确性。通过临床决策分析发现,动态诺模图具有显著的实际临床价值。该模型可在 https://min115.shinyapps.io/dynnomapp/ 上获取。

结论

在继发性甲状旁腺功能亢进患者中,基于年龄、甲状旁腺激素和血钙的动态诺模图可以更准确地预测甲状旁腺切除术后 HBS 的发生可能性,使医生能够更快地做出临床决策并及时调整治疗计划,以降低 HBS 的发生率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验