Suppr超能文献

针对 EGFR 和 COX-2 抑制剂:新型噻吩基吡唑啉衍生物中氯原子作用的综合计算研究。

Towards targeting EGFR and COX-2 inhibitors: comprehensive computational studies on the role of chlorine group in novel thienyl-pyrazoline derivative.

机构信息

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia.

出版信息

J Biomol Struct Dyn. 2024;42(19):9857-9872. doi: 10.1080/07391102.2023.2252915. Epub 2023 Aug 29.

Abstract

To enhance the effectiveness of chemotherapy and overcome resistance, scientists must develop novel drugs or scaffolds that have a combined effect, such as the inhibition of EGFR and COX-2. This research employed virtual screening techniques, such as docking, and dynamics simulation, to predict chlorinated thienyl-pyrazoline derivatives that inhibit these proteins. The study proposed eleven (11) ligands with binding energies ranging from -7.8 kcal/mol to -8.7 kcal/mol for EGFR and -6.4 kcal/mol to -8.4 kcal/mol for COX-2. Ligands P1 and P11 exhibited the highest binding affinity for both proteins. The results of RMSD, RMSF, RoG, SASA the number of hydrogen bonds, and BAR free binding energy demonstrated the good stability of ligands P1 and P11 when binding to both proteins over 180 ns simulations. In addition, the absorption, distribution, metabolism, excretion, and toxicity properties of the selected ligands were assessed to predict their toxicity and drug likeliness. Based on the results, these compounds can be proposed for further synthesis and studies.Communicated by Ramaswamy H. Sarma.

摘要

为了提高化疗效果并克服耐药性,科学家们必须开发具有协同作用的新型药物或支架,例如抑制 EGFR 和 COX-2。本研究采用虚拟筛选技术,如对接和动力学模拟,来预测抑制这些蛋白质的氯化噻吩-吡唑啉衍生物。该研究提出了 11 种配体,它们与 EGFR 的结合能范围为-7.8 kcal/mol 至-8.7 kcal/mol,与 COX-2 的结合能范围为-6.4 kcal/mol 至-8.4 kcal/mol。配体 P1 和 P11 对两种蛋白质均表现出最高的结合亲和力。RMSD、RMSF、RoG、SASA 和氢键数量以及 BAR 自由结合能的结果表明,在 180 ns 模拟以上的两种蛋白质结合中,配体 P1 和 P11 具有良好的稳定性。此外,还评估了所选配体的吸收、分布、代谢、排泄和毒性特性,以预测其毒性和药物相似性。基于这些结果,可以提出这些化合物进行进一步的合成和研究。通讯作者为 Ramaswamy H. Sarma。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验