Suppr超能文献

基于药物库虚拟筛选、ADMET、对接、密度泛函理论(DFT)和分子动力学模拟研究的表皮生长因子受体(EGFR)蛋白的计算机辅助抗癌药物发现

Computer-aided anti-cancer drug discovery of EGFR protein based on virtual screening of drug bank, ADMET, docking, DFT and molecular dynamic simulation studies.

作者信息

Roney Miah, Dubey Amit, Hassan Nasir Muhammad, Tufail Aisha, Tajuddin Saiful Nizam, Mohd Aluwi Mohd Fadhlizil Fasihi, Huq Akm Moyeenul

机构信息

Faculty of Industrial Sciences and Technology, Universiti Malafysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia.

Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia.

出版信息

J Biomol Struct Dyn. 2024 Nov;42(18):9662-9677. doi: 10.1080/07391102.2023.2252092. Epub 2023 Sep 7.

Abstract

Numerous malignancies, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia, are brought on by aberrant tyrosine kinase signaling. Since the current chemotherapeutic medicines are toxic, there is a great need and demand from cancer patients to find novel chemicals that are toxic-free or have low toxicity and that can kill tumor cells and stop their growth. This work describes the in-silico examination of substances from the drug bank as EGFR inhibitors. Firstly, drug-bank was screened using the pharmacophore technique to select the ligands and Erlotinib (DB00530) was used as matrix compound. The selected ligands were screened using ADMET and the hit compounds were subjected to docking. The lead compound from the docking was subjected to DFT and MD simulation study. Using the pharmacophore technique, 23 compounds were found through virtual drug bank screening. One hit molecule from the ADMET prediction was the subject of docking study. According to the findings, DB03365 molecule fits to the EGFR active site by several hydrogen bonding interactions with amino acids. Furthermore, DFT analysis revealed high reactivity for DB03365 compound in the binding pocket of the target protein, based on E, E and band energy gap. Furthermore, MD simulations for 100 ns revealed that the ligand interactions with the residues of EGFR protein were part of the essential residues for structural stability and functionality. However, DB03365 was a promising lead molecule that outperformed the reference compound in terms of performance and in-vitro and in-vivo experiments needs to validate the study.Communicated by Ramaswamy H. Sarma.

摘要

包括乳腺癌、非小细胞肺癌和慢性粒细胞白血病在内的许多恶性肿瘤都是由异常的酪氨酸激酶信号传导引起的。由于目前的化疗药物有毒性,癌症患者迫切需要找到无毒或低毒的新型化学物质,这些物质能够杀死肿瘤细胞并阻止其生长。这项工作描述了对药物库中的物质作为表皮生长因子受体(EGFR)抑制剂的计算机模拟研究。首先,使用药效团技术对药物库进行筛选以选择配体,并将厄洛替尼(DB00530)用作母体化合物。使用药物代谢和毒性预测(ADMET)对所选配体进行筛选,并对命中的化合物进行对接。对接得到的先导化合物进行密度泛函理论(DFT)和分子动力学(MD)模拟研究。通过虚拟药物库筛选,使用药效团技术发现了23种化合物。ADMET预测中的一个命中分子是对接研究的对象。根据研究结果,DB03365分子通过与氨基酸的几种氢键相互作用与EGFR活性位点契合。此外,基于能量(E)、前线分子轨道能量(E)和带隙能量,DFT分析表明DB03365化合物在靶蛋白的结合口袋中具有高反应活性。此外,100纳秒的MD模拟表明,配体与EGFR蛋白残基的相互作用是结构稳定性和功能的关键残基的一部分。然而,DB03365是一个有前景的先导分子,在性能方面优于参考化合物,体外和体内实验需要验证该研究。由拉马斯瓦米·H·萨尔马传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验