Huard Dustin J E, Johnson Abigail M, Fan Zixing, Kenney Lydia G, Xu Manlin, Drori Ran, Gumbart James C, Dai Sheng, Lieberman Raquel L, Glass Jennifer B
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA.
PNAS Nexus. 2023 Aug 14;2(8):pgad268. doi: 10.1093/pnasnexus/pgad268. eCollection 2023 Aug.
Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.
大陆边缘的甲烷笼形水合物蕴含着地球上最大的碳氢化合物储量,然而生物分子在笼形水合物形成和稳定性方面所起的作用几乎完全未知。在此,我们报告了从含气笼形水合物的海洋沉积物宏基因组中发现的源自细菌的新型甲烷笼形水合物结合蛋白(CbpAs)。CbpAs对甲烷笼形水合物生长的抑制作用与商业笼形水合物抑制剂聚乙烯吡咯烷酮相似,并且在比先前测试的抗冻蛋白(AFPs)更低的浓度下就能抑制笼形水合物的生长。与AFPs不同,CbpAs对笼形水合物的选择性高于冰。CbpA呈现出一种非球状的伸展结构,其表面有一个暴露的疏水区域,而且出人意料的是,它与AFPs共有的TxxxAxxxAxx基序被埋藏起来,并不参与笼形水合物的结合。相反,模拟和诱变实验表明CbpAs与甲烷笼形水合物存在一种二元相互作用,其中一个高度保守的脯氨酸残基的吡咯烷环通过填充空的笼形水合物笼来介导结合。CbpAs对甲烷笼形水合物性质具有如此强大的控制作用这一发现意味着,来自原生沉积物细菌的生物分子可能对笼形水合物的稳定性和宜居性至关重要。