Suppr超能文献

过冷水中的冰识别并不需要通过抗冻蛋白的预订单来完成。

Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.

机构信息

Department of Chemistry, The University of Utah, Salt Lake City, UT 84112-0850.

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314.

出版信息

Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8266-8271. doi: 10.1073/pnas.1806996115. Epub 2018 Jul 9.

Abstract

Antifreeze proteins (AFPs) inhibit ice growth in organisms living in cold environments. Hyperactive insect AFPs are particularly effective, binding ice through "anchored clathrate" motifs. It has been hypothesized that the binding of hyperactive AFPs to ice is facilitated by preordering of water at the ice-binding site (IBS) of the protein in solution. The antifreeze protein AFP displays the best matching of its binding site to ice, making it the optimal candidate to develop ice-like order in solution. Here we use multiresolution simulations to unravel the mechanism by which AFP recognizes and binds ice. We find that water at the IBS of the antifreeze protein in solution does not acquire ice-like or anchored clathrate-like order. Ice recognition occurs by slow diffusion of the protein to achieve the proper orientation with respect to the ice surface, followed by fast collective organization of the hydration water at the IBS to form an anchored clathrate motif that latches the protein to the ice surface. The simulations suggest that anchored clathrate order could develop on the large ice-binding surfaces of aggregates of ice-nucleating proteins (INP). We compute the infrared and Raman spectra of water in the anchored clathrate motif. The signatures of the OH stretch of water in the anchored clathrate motif can be distinguished from those of bulk liquid in the Raman spectra, but not in the infrared spectra. We thus suggest that Raman spectroscopy may be used to probe the anchored clathrate order at the ice-binding surface of INP aggregates.

摘要

抗冻蛋白(AFPs)抑制生活在寒冷环境中的生物体中冰的生长。活性高的昆虫 AFP 特别有效,通过“锚定笼形”基序结合冰。据推测,活性 AFP 与冰的结合是通过蛋白质在溶液中冰结合部位(IBS)的水的预有序化来促进的。抗冻蛋白 AFP 显示出与冰的最佳结合部位匹配,使其成为在溶液中开发类似冰的有序结构的最佳候选物。在这里,我们使用多分辨率模拟来揭示 AFP 识别和结合冰的机制。我们发现,溶液中 AFP 的 IBS 处的水没有获得类似冰或类似锚定笼形的有序结构。冰的识别是通过 AFP 缓慢扩散到适当的位置相对于冰表面,然后快速集体组织 IBS 处的水合水,形成一个锚定笼形基序,将蛋白质锁定到冰表面。模拟表明,锚定笼形有序结构可以在冰核蛋白(INP)聚集物的大冰结合表面上发展。我们计算了锚定笼形基序中水的红外和拉曼光谱。在拉曼光谱中,可以区分水的 OH 伸展在锚定笼形基序中的特征与在体相中水的特征,但在红外光谱中不能区分。因此,我们建议拉曼光谱可用于探测 INP 聚集物冰结合表面上的锚定笼形有序结构。

相似文献

4
Hyperactive Antifreeze Proteins Promote Ice Growth before Binding to It.超活性抗冻蛋白在与冰结合之前促进冰的生长。
J Chem Inf Model. 2022 Nov 14;62(21):5165-5174. doi: 10.1021/acs.jcim.1c00915. Epub 2021 Oct 29.

引用本文的文献

4
On the engulfment of antifreeze proteins by ice.关于抗冻蛋白与冰的吞噬作用。
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2320205121. doi: 10.1073/pnas.2320205121. Epub 2024 Jun 4.
8
De novo designed ice-binding proteins from twist-constrained helices.从头设计的扭结受限螺旋冰结合蛋白。
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2220380120. doi: 10.1073/pnas.2220380120. Epub 2023 Jun 26.

本文引用的文献

4
Molecular Origin of the Vibrational Structure of Ice I.冰I振动结构的分子起源
J Phys Chem Lett. 2017 Jun 15;8(12):2579-2583. doi: 10.1021/acs.jpclett.7b01106. Epub 2017 May 26.
9
Water at Interfaces.界面水
Chem Rev. 2016 Jul 13;116(13):7698-726. doi: 10.1021/acs.chemrev.6b00045. Epub 2016 May 27.
10
Ice-nucleating bacteria control the order and dynamics of interfacial water.冰核细菌控制界面水的秩序和动力学。
Sci Adv. 2016 Apr 22;2(4):e1501630. doi: 10.1126/sciadv.1501630. eCollection 2016 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验