Shao Hua-Chieh, Mengke Tielige, Deng Jie, Zhang You
The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
ArXiv. 2023 Aug 18:arXiv:2308.09771v1.
3D cine-magnetic resonance imaging (cine-MRI) can capture images of the human body volume with high spatial and temporal resolutions to study the anatomical dynamics. However, the reconstruction of 3D cine-MRI is challenged by highly undersampled k-space data in each dynamic (cine) frame, due to the slow speed of MR signal acquisition. We proposed a machine learning-based framework, spatial and temporal implicit neural representation learning (STINR-MR), for accurate 3D cine-MRI reconstruction from highly undersampled data.
STINR-MR used a joint reconstruction and deformable registration approach to achieve a high acceleration factor for cine volumetric imaging. It addressed the ill-posed spatiotemporal reconstruction problem by solving a reference-frame 3D MR image and a corresponding motion model which deforms the reference frame to each cine frame. The reference-frame 3D MR image was reconstructed as a spatial implicit neural representation (INR) network, which learns the mapping from input 3D spatial coordinates to corresponding MR values. The dynamic motion model was constructed via a temporal INR, as well as basis deformation vector fields (DVFs) extracted from prior/onboard 4D-MRIs using principal component analysis (PCA). The learned temporal INR encodes input time points and outputs corresponding weighting factors to combine the basis DVFs into time-resolved motion fields that represent cine-frame-specific dynamics. STINR-MR was evaluated using MR data simulated from the 4D extended cardiac-torso (XCAT) digital phantom, as well as MR data acquired clinically from a healthy human subject. Its reconstruction accuracy was also compared with that of the model-based non-rigid motion estimation method (MR-MOTUS).
STINR-MR can reconstruct 3D cine-MR images with high temporal (<100 ms) and spatial (3 mm) resolutions. Compared with MR-MOTUS, STINR-MR consistently reconstructed images with better image quality and fewer artifacts and achieved superior tumor localization accuracy via the solved dynamic DVFs. For the XCAT study, STINR reconstructed the tumors to a mean±S.D. center-of-mass error of 1.0±0.4 mm, compared to 3.4±1.0 mm of the MR-MOTUS method. The high-frame-rate reconstruction capability of STINR-MR allows different irregular motion patterns to be accurately captured.
STINR-MR provides a lightweight and efficient framework for accurate 3D cine-MRI reconstruction. It is a 'one-shot' method that does not require external data for pre-training, allowing it to avoid generalizability issues typically encountered in deep learning-based methods.
三维电影磁共振成像(cine-MRI)能够以高空间和时间分辨率捕捉人体体积图像,以研究解剖动力学。然而,由于磁共振信号采集速度较慢,三维cine-MRI的重建受到每个动态(电影)帧中高度欠采样的k空间数据的挑战。我们提出了一种基于机器学习的框架,即空间和时间隐式神经表示学习(STINR-MR),用于从高度欠采样的数据中准确重建三维cine-MRI。
STINR-MR采用联合重建和可变形配准方法,以实现电影体积成像的高加速因子。它通过求解参考帧三维磁共振图像和将参考帧变形到每个电影帧的相应运动模型,解决了不适定的时空重建问题。参考帧三维磁共振图像被重建为空间隐式神经表示(INR)网络,该网络学习从输入的三维空间坐标到相应磁共振值的映射。动态运动模型通过时间INR以及使用主成分分析(PCA)从先前/机载四维磁共振成像中提取的基础变形矢量场(DVF)构建。学习到的时间INR对输入时间点进行编码,并输出相应的加权因子,以将基础DVF组合成表示电影帧特定动态的时间分辨运动场。使用从四维扩展心脏躯干(XCAT)数字体模模拟的磁共振数据以及从健康人体受试者临床采集的磁共振数据对STINR-MR进行评估。还将其重建精度与基于模型的非刚性运动估计方法(MR-MOTUS)的精度进行了比较。
STINR-MR能够以高时间(<100毫秒)和空间(3毫米)分辨率重建三维cine-MR图像。与MR-MOTUS相比,STINR-MR始终能够重建出图像质量更好、伪影更少的图像,并通过求解的动态DVF实现了更高的肿瘤定位精度。对于XCAT研究,STINR将肿瘤重建到质心平均±标准差误差为1.0±0.4毫米;相比之下,MR-MOTUS方法的误差为3.4±1.0毫米。STINR-MR的高帧率重建能力允许准确捕捉不同的不规则运动模式。
STINR-MR为准确的三维cine-MRI重建提供了一个轻量级且高效的框架。它是一种“一次性”方法,不需要外部数据进行预训练,从而避免了基于深度学习的方法中通常遇到的泛化问题。