Suppr超能文献

关于从单次兆伏级动态电子射野影像装置(MV cine EPID)图像估计随时间变化的容积治疗图像和三维肿瘤定位的初步研究。

An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images.

作者信息

Mishra Pankaj, Li Ruijiang, Mak Raymond H, Rottmann Joerg, Bryant Jonathan H, Williams Christopher L, Berbeco Ross I, Lewis John H

机构信息

Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.

出版信息

Med Phys. 2014 Aug;41(8):081713. doi: 10.1118/1.4889779.

Abstract

PURPOSE

In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images.

METHODS

The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image.

RESULTS

The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data.

CONCLUSIONS

The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient.

摘要

目的

在本研究中,作者开发并研究了一种从单个MV电影电子门静脉成像设备(EPID)图像估计随时间变化的容积图像的方法的可行性。

方法

作者采用两步法从单个电影EPID图像估计随时间变化的容积图像。第一步,根据4DCT构建特定患者的运动模型。第二步,根据EPID图像中的信息调整运动模型的参数。特定患者的运动模型基于位移向量场(DVF)中表示的肺运动的紧凑表示。通过将参考4DCT相位图像(通常为呼气峰值)与对应于呼吸周期不同阶段的一组4DCT图像进行可变形图像配准(DIR)来计算DVF。通过主成分分析(PCA)在紧凑表示中捕获DVF中的显著特征。PCA解耦了DVF的空间和时间成分。空间信息由特征向量表示,时间信息由特征系数表示。为了生成新的容积图像,基于数字重建射线照片和投影图像通过成本函数优化来更新特征系数。然后将更新后的特征系数与特征向量相乘,以获得更新后的DVF,进而得到与电影EPID图像对应的容积图像。

结果

该算法在(1)基于不同不规则患者呼吸模式的八个数字扩展心脏 - 躯干体模数据集和(2)SBRT治疗期间获取的患者电影EPID图像上进行了测试。对于XCAT数据,肿瘤定位的均方根误差为(0.73±0.63毫米),对于患者数据为(0.90±0.65毫米)。

结论

作者介绍了一种从单个电影EPID图像估计容积随时间变化图像的新方法以及基于PCA的肺运动模型。这是第一种从单个MV电影EPID图像估计容积随时间变化图像的方法,并且有可能在不给患者额外成像剂量的情况下提供容积信息。

相似文献

2
3D delivered dose assessment using a 4DCT-based motion model.
Med Phys. 2015 Jun;42(6):2897-907. doi: 10.1118/1.4921041.

引用本文的文献

2
Synthetic 4DCT(MRI) lung phantom generation for 4D radiotherapy and image guidance investigations.
Med Phys. 2022 May;49(5):2890-2903. doi: 10.1002/mp.15591. Epub 2022 Mar 17.
3
Deep learning-based motion tracking using ultrasound images.
Med Phys. 2021 Dec;48(12):7747-7756. doi: 10.1002/mp.15321. Epub 2021 Nov 13.
6
Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond.
IEEE Trans Med Imaging. 2018 Mar;37(3):680-692. doi: 10.1109/TMI.2017.2738448. Epub 2017 Aug 10.
7
Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning.
Biomed Phys Eng Express. 2015 Dec 1;1(4). doi: 10.1088/2057-1976/1/4/045015. Epub 2015 Dec 29.
8
3D delivered dose assessment using a 4DCT-based motion model.
Med Phys. 2015 Jun;42(6):2897-907. doi: 10.1118/1.4921041.
9
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.
Phys Med Biol. 2015 May 7;60(9):3807-24. doi: 10.1088/0031-9155/60/9/3807. Epub 2015 Apr 23.

本文引用的文献

1
Evaluation of 3D fluoroscopic image generation from a single planar treatment image on patient data with a modified XCAT phantom.
Phys Med Biol. 2013 Feb 21;58(4):841-58. doi: 10.1088/0031-9155/58/4/841. Epub 2013 Jan 21.
2
Adaptation and applications of a realistic digital phantom based on patient lung tumor trajectories.
Phys Med Biol. 2012 Jun 7;57(11):3597-608. doi: 10.1088/0031-9155/57/11/3597.
3
On a PCA-based lung motion model.
Phys Med Biol. 2011 Sep 21;56(18):6009-30. doi: 10.1088/0031-9155/56/18/015. Epub 2011 Aug 24.
5
4D XCAT phantom for multimodality imaging research.
Med Phys. 2010 Sep;37(9):4902-15. doi: 10.1118/1.3480985.
6
A multi-region algorithm for markerless beam's-eye view lung tumor tracking.
Phys Med Biol. 2010 Sep 21;55(18):5585-98. doi: 10.1088/0031-9155/55/18/021. Epub 2010 Aug 31.
7
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.
8
A novel method for estimating SBRT delivered dose with beam's-eye-view images.
Med Phys. 2008 Jul;35(7):3225-31. doi: 10.1118/1.2938514.
9
The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
Med Phys. 2006 Oct;33(10):3874-900. doi: 10.1118/1.2349696.
10
Dosimetric comparison of stereotactic body radiotherapy in different respiration conditions: a modeling study.
Radiother Oncol. 2006 Oct;81(1):97-104. doi: 10.1016/j.radonc.2006.08.006. Epub 2006 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验