Suppr超能文献

非lemniscal下丘中时变声音的群体编码

Population coding of time-varying sounds in the non-lemniscal Inferior Colliculus.

作者信息

Shi Kaiwen, Quass Gunnar L, Rogalla Meike M, Ford Alexander N, Czarny Jordyn E, Apostolides Pierre F

机构信息

Kresge Hearing Research Institute, Department of Otolaryngology - Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109.

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109.

出版信息

bioRxiv. 2023 Aug 16:2023.08.14.553263. doi: 10.1101/2023.08.14.553263.

Abstract

The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here we use 2-photon Ca imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset were highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ~0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.

摘要

中脑的下丘对于复杂声音处理很重要,比如区分同种发声和人类语音。下丘的非lemniscal背侧“壳”区可能在此过程中起重要作用,因为这些层中的神经元投射到高阶丘脑核,随后将听觉信号输送到杏仁核和非初级听觉皮层;这些前脑回路对于包括人类在内的多种哺乳动物的发声编码很重要。然而,由于通过传统方法从下丘表层神经元进行记录存在技术困难,壳下丘神经元传递辨别发声所需声学特征的程度尚不清楚。在这里,我们使用双光子钙成像技术对雌雄小鼠进行测试,以研究壳下丘神经元群体如何编码调幅的速率和深度,这是语音感知的重要声音线索。大多数壳下丘神经元的调谐范围较广,对调幅速率的神经测量辨别能力较低;只有一小部分对特定调幅速率具有高度选择性。尽管如此,基于壳下丘神经元群体荧光数据训练的神经网络分类器能够准确地对调幅速率进行分类,并且当从训练数据中省略高度调谐的神经元时,解码准确率仅略有降低。相反,分类器的准确率随着训练数据的调制深度单调增加,因此在全深度调制声音上训练的分类器的中位数解码误差约为0.2倍频程。因此,壳下丘神经元可能通过群体编码传递随时间变化的信号,可能对任何单个神经元的辨别能力依赖有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d338/10461978/5c27416211cd/nihpp-2023.08.14.553263v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验