Suppr超能文献

联合治疗改善生物膜的黏液纤毛运输

Combination Treatment to Improve Mucociliary Transport of Biofilms.

作者信息

Rouillard Kaitlyn R, Esther Christopher P, Kissner William J, Plott Lucas M, Bowman Dean W, Markovetz Matthew R, Hill David B

机构信息

Marsico Lung Institute, UNC Chapel Hill, Chapel Hill, NC 27599.

Joint Department of Biomedical Engineering, UNC Chapel Hill, NC 27599.

出版信息

bioRxiv. 2023 Aug 14:2023.08.14.553173. doi: 10.1101/2023.08.14.553173.

Abstract

People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.g., phagocytosis) and chemical treatments including antibiotics. Herein, combination treatments designed to disrupt the mechanical properties of biofilms and potentiate antibiotic efficacy are investigated against mucus-grown biofilms and optimized to 1) alter biofilm viscoelastic properties, 2) increase mucociliary transport rates, and 3) reduce bacterial viability. A disulfide bond reducing agent (tris(2-carboxyethyl)phosphine, TCEP), a surfactant (NP40), a biopolymer (hyaluronic acid, HA), a DNA degradation enzyme (DNase), and an antibiotic (tobramycin) are tested in various combinations to maximize biofilm disruption. The viscoelastic properties of biofilms are quantified with particle tracking microrheology and transport rates are quantified in a mucociliary transport device comprised of fully differentiated primary human bronchial epithelial cells. The combination of the NP40 with hyaluronic acid and tobramycin was the most effective at increasing mucociliary transport rates, decreasing the viscoelastic properties of mucus, and reducing bacterial viability. Multimechanistic targeting of biofilm infections may ultimately result in improved clinical outcomes, and the results of this study may be translated into future in vivo infection models.

摘要

患有黏液阻塞性肺部疾病(如囊性纤维化(CF)和慢性阻塞性肺疾病(COPD))的患者经常发生急性或慢性呼吸道感染,部分原因是气道内高浓度黏液的积聚,这些感染难以治疗。黏液积聚和阻塞会促进慢性炎症和感染,并降低治疗效果。生物膜形式的细菌聚集体对免疫反应(如吞噬作用)产生的机械应激源以及包括抗生素在内的化学治疗表现出更高的抗性。在此,针对黏液生长的生物膜,研究了旨在破坏生物膜机械性能并增强抗生素疗效的联合治疗方法,并将其优化以实现以下目标:1)改变生物膜的粘弹性特性;2)提高黏液纤毛运输速率;3)降低细菌活力。测试了二硫键还原剂(三(2-羧乙基)膦,TCEP)、表面活性剂(NP40)、生物聚合物(透明质酸,HA)、DNA降解酶(DNase)和抗生素(妥布霉素)的各种组合,以最大程度地破坏生物膜。通过粒子跟踪微流变学对生物膜的粘弹性特性进行定量,并在由完全分化的原代人支气管上皮细胞组成的黏液纤毛运输装置中对运输速率进行定量。NP40与透明质酸和妥布霉素的组合在提高黏液纤毛运输速率、降低黏液的粘弹性特性以及降低细菌活力方面最为有效。对生物膜感染进行多机制靶向治疗最终可能会改善临床结果,本研究结果可能会转化为未来的体内感染模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/10461968/9cdd1a78c224/nihpp-2023.08.14.553173v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验