Lundgren Eric A S, Byron Carly, Constantinou Procopios, Stock Taylor J Z, Curson Neil J, Thomsen Lars, Warschkow Oliver, Teplyakov Andrew V, Schofield Steven R
London Centre for Nanotechnology, University College London, WC1H 0AH London, U.K.
Department of Physics and Astronomy, University College London, WC1E 6BT London, U.K.
J Phys Chem C Nanomater Interfaces. 2023 Aug 14;127(33):16433-16441. doi: 10.1021/acs.jpcc.3c03916. eCollection 2023 Aug 24.
We investigate the adsorption and thermal decomposition of triphenyl bismuth (TPB) on the silicon (001) surface using atomic-resolution scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, and density functional theory calculations. Our results show that the adsorption of TPB at room temperature creates both bismuth-silicon and phenyl-silicon bonds. Annealing above room temperature leads to increased chemical interactions between the phenyl groups and the silicon surface, followed by phenyl detachment and bismuth subsurface migration. The thermal decomposition of the carbon fragments leads to the formation of silicon carbide at the surface. This chemical understanding of the process allows for controlled bismuth introduction into the near surface of silicon and opens pathways for ultra-shallow doping approaches.
我们使用原子分辨率扫描隧道显微镜、基于同步加速器的X射线光电子能谱和密度泛函理论计算,研究了三苯基铋(TPB)在硅(001)表面的吸附和热分解。我们的结果表明,室温下TPB的吸附会形成铋-硅键和苯基-硅键。高于室温的退火会导致苯基与硅表面之间的化学相互作用增强,随后苯基脱离和铋的次表面迁移。碳碎片的热分解导致表面形成碳化硅。对该过程的这种化学理解使得能够将铋可控地引入硅的近表面,并为超浅掺杂方法开辟了途径。