Stock Taylor J Z, Warschkow Oliver, Constantinou Procopios C, Li Juerong, Fearn Sarah, Crane Eleanor, Hofmann Emily V S, Kölker Alexander, McKenzie David R, Schofield Steven R, Curson Neil J
London Centre for Nanotechnology, University College London, London WC1H 0AH, U.K.
Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.
ACS Nano. 2020 Mar 24;14(3):3316-3327. doi: 10.1021/acsnano.9b08943. Epub 2020 Mar 12.
Over the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-in-silicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and in-plane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24 ± 0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer confinement as good as similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 kΩ/square. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and may be important for three-dimensional devices, where vertical control of the position of device components is critical.
在过去二十年中,人们利用扫描隧道显微镜和氢阻光刻技术以原子尺度精度在硅中定位磷原子,制造出了用于未来经典和量子计算技术的原型设备。尽管取得了这些成功,但磷化氢仍然是唯一被证明与氢阻光刻技术兼容的施主前驱体分子。到目前为止,替代掺杂剂原子尺度放置的潜在好处尚未得到探索。在这项工作中,我们展示了成功制造硅中砷的原子尺度结构。使用扫描隧道显微镜针尖,我们通过以砷化氢作为前驱体分子,对单层氢掩膜进行图案化,从而在Si(001)表面选择性地放置砷原子。我们全面阐明了砷化氢在Si(001)上的表面化学和反应路径,揭示了与磷化氢的显著差异。我们解释了这些差异如何导致与磷相比,砷在表面的固定化增强以及面内限制增强,以及砷的剂量率无关的饱和密度为0.24±0.04单层。我们展示了使用硅分子束外延成功封装砷δ层,并发现其电学特性与用磷制造的等效结构具有竞争力。还发现砷δ层提供的限制与类似制备的磷层一样好,同时仍保持>80%的载流子激活率和<2kΩ/方的薄层电阻。砷的这些优异特性为增强硅中掺杂剂结构的原子尺度制造的现有能力提供了机会,并且对于三维器件可能很重要,在三维器件中器件组件位置的垂直控制至关重要。