Liang Haosheng, Borys Andryj M, Hevia Eva, Perrin Marie-Eve L, Payard Pierre-Adrien
Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, Rue Victor Grignard, Villeurbanne Cedex F-69622, France.
Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Bern 3012, Switzerland.
J Am Chem Soc. 2023 Sep 13;145(36):19989-19999. doi: 10.1021/jacs.3c06647. Epub 2023 Aug 30.
The Ni-catalyzed cross-coupling of aryl ethers is a powerful synthetic tool to transform widely available phenol derivatives into functionalized aromatic molecules. Recent theoretical and experimental mechanistic studies have identified the involvement of heterobimetallic nickelates as key intermediates that facilitate the challenging transformation under mild conditions and often without the need for external ligands or additives. In this work, based on calculations performed at the density functional theory (DFT) level and by comparison with spectroscopic and kinetic data, we investigate the mechanism of the Ni(COD)-catalyzed cross-coupling of 2-methoxynaphthalene with PhLi and assess the speciation of lithium nickelate intermediates. The crucial role of solvent on the reaction is explained, and the multiple roles played by lithium are unveiled. Experimental studies have identified key lithium nickelate species which support and help to evolve the calculated reaction mechanism and ultimately complete the catalytic cycle. Based on this new mechanistic knowledge, a well-known experimental challenge of these transformations, the so-called "naphthalene problem" which restricts the use of electrophilic coupling partners to π-extended systems, can be addressed to enable the cross-coupling of unbiased aryl ethers under mild conditions.
镍催化的芳基醚交叉偶联是一种强大的合成工具,可将广泛可得的苯酚衍生物转化为功能化的芳香分子。最近的理论和实验机理研究已确定异双金属镍酸盐作为关键中间体参与其中,这些中间体有助于在温和条件下实现具有挑战性的转化,并且通常无需外部配体或添加剂。在这项工作中,基于在密度泛函理论(DFT)水平上进行的计算,并通过与光谱和动力学数据进行比较,我们研究了Ni(COD)催化2-甲氧基萘与PhLi交叉偶联的机理,并评估了锂镍酸盐中间体的形态。解释了溶剂对反应的关键作用,并揭示了锂所起的多重作用。实验研究确定了关键的锂镍酸盐物种,这些物种支持并有助于完善计算出的反应机理,并最终完成催化循环。基于这一新的机理知识,可以解决这些转化过程中一个众所周知的实验难题,即所谓的“萘问题”,该问题将亲电偶联伙伴的使用限制在π-扩展体系中,从而能够在温和条件下实现无偏芳基醚的交叉偶联。