Jedrzejewski Mateusz, Belza Barbara, Lewandowska Iwona, Sadlej Marta, Perlinska Agata P, Augustyniak Rafal, Christian Thomas, Hou Ya-Ming, Kalek Marcin, Sulkowska Joanna I
Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland.
Comput Struct Biotechnol J. 2023 Aug 9;21:3999-4008. doi: 10.1016/j.csbj.2023.08.001. eCollection 2023.
The Nep1 protein is essential for the formation of eukaryotic and archaeal small ribosomal subunits, and it catalyzes the site-directed SAM-dependent methylation of pseudouridine (Ψ) during pre-rRNA processing. It possesses a non-trivial topology, namely, a 3 knot in the active site. Here, we address the issue of seemingly unfeasible deprotonation of Ψ in Nep1 active site by a distant aspartate residue (D101 in S. cerevisiae), using a combination of bioinformatics, computational, and experimental methods. We identified a conserved hydroxyl-containing amino acid (S233 in , T198 in ) that may act as a proton-transfer mediator. Molecular dynamics simulations, based on the crystal structure of , and on a complex generated by molecular docking in , confirmed that this amino acid can shuttle protons, however, a water molecule in the active site may also serve this role. Quantum-chemical calculations based on density functional theory and the cluster approach showed that the water-mediated pathway is the most favorable for catalysis. Experimental kinetic and mutational studies reinforce the requirement for the aspartate D101, but not S233. These findings provide insight into the catalytic mechanisms underlying proton transfer over extended distances and comprehensively elucidate the mode of action of Nep1.
Nep1蛋白对于真核生物和古细菌小核糖体亚基的形成至关重要,并且在pre-rRNA加工过程中催化假尿苷(Ψ)的位点定向SAM依赖性甲基化。它具有一种不平凡的拓扑结构,即在活性位点有一个3结。在这里,我们结合生物信息学、计算和实验方法,探讨了酿酒酵母中一个远距离天冬氨酸残基(D101)在Nep1活性位点对Ψ进行看似不可行的去质子化问题。我们鉴定出一个保守的含羟基氨基酸(酿酒酵母中为S233,嗜热栖热菌中为T198),它可能充当质子转移介质。基于嗜热栖热菌的晶体结构以及通过分子对接在酿酒酵母中生成的复合物进行的分子动力学模拟证实,该氨基酸可以穿梭质子,然而,活性位点中的一个水分子也可能起到这个作用。基于密度泛函理论和簇方法的量子化学计算表明,水介导的途径对催化最为有利。实验动力学和突变研究强化了对天冬氨酸D101而非S233的需求。这些发现为远距离质子转移的催化机制提供了见解,并全面阐明了Nep1的作用模式。