Banerjee Koustav, Dastidar Manosij Ghosh
Research Institute for Symbolic Computation, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria.
Technische Universität Wien, Wiedner Hauptstrasse 8-10/104, 1040 Wien, Austria.
Ann Comb. 2023;27(3):565-578. doi: 10.1007/s00026-022-00615-1. Epub 2022 Oct 25.
In this paper, we explore intricate connections between Ramanujan's theta functions and a class of partition functions defined by the nature of the parity of their parts. This consequently leads us to the parity analysis of the crank of a partition and its correlation with the number of partitions with odd number of parts, self-conjugate partitions, and also with Durfee squares and Frobenius symbols.
在本文中,我们探讨拉马努金θ函数与一类根据其部分的奇偶性定义的分拆函数之间的复杂联系。这进而引导我们对分拆的曲柄进行奇偶性分析,以及它与具有奇数个部分的分拆数、自共轭分拆,还有与杜尔费正方形和弗罗贝尼乌斯符号的相关性。