Arikawa Yasuhiro, Yamada Motoki, Takemoto Nobuko, Nagaoka Takuya, Tsujita Yusuke, Nakamura Taiji, Tsuruta Yusuke, Horiuchi Shinnosuke, Sakuda Eri, Yoshizawa Kazunari, Umakoshi Keisuke
Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan.
J Am Chem Soc. 2023 Oct 11;145(40):21729-21732. doi: 10.1021/jacs.3c07248. Epub 2023 Aug 31.
Sulfite reduction by dissimilatory sulfite reductases is a key process in the global sulfur cycle. Sulfite reductases catalyze the 6e reduction of SO to HS using eight protons (SO + 8H + 6e → HS + 3HO). However, detailed research into the reductive conversion of sulfite on transition-metal-based complexes remains unexplored. As part of our ongoing research into reproducing the function of reductases using dinuclear ruthenium complex {(TpRu)(μ-Cl)(μ-pz)} (Tp = HB(pyrazolyl)), we have targeted the function of sulfite reductase. The isolation of a key SO-bridged complex, followed by a sulfite-bridged complex, eventually resulted in a stepwise sulfite reduction. The reduction of a sulfite to a sulfur monoxide using 4H and 4e, which was followed by conversion of the sulfur monoxide to a disulfide with concomitant consumption of 2H and 2e, proceeded on the same platform. Finally, the production of HS from the disulfide-bridged complex was achieved.
异化亚硫酸盐还原酶催化的亚硫酸盐还原是全球硫循环中的关键过程。亚硫酸盐还原酶利用八个质子催化亚硫酸根离子(SO₃²⁻)进行6电子还原生成硫氢根离子(HS⁻)(SO₃²⁻ + 8H⁺ + 6e⁻ → HS⁻ + 3H₂O)。然而,关于过渡金属基配合物上亚硫酸盐还原转化的详细研究仍未开展。作为我们使用双核钌配合物{(TpRu)(μ-Cl)(μ-pz)}(Tp = HB(吡唑基))重现还原酶功能的 ongoing 研究的一部分,我们将目标对准了亚硫酸盐还原酶的功能。关键的亚硫酸根桥联配合物的分离,随后是亚硫酸根桥联配合物的分离,最终导致了亚硫酸盐的逐步还原。在同一平台上,使用4个H⁺和4个电子将亚硫酸盐还原为一氧化硫,随后一氧化硫转化为二硫化物并伴随消耗2个H⁺和2个电子。最后,实现了从二硫键桥联配合物生成硫氢根离子(HS⁻)。