Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD, Esplanade de la Paix, F-14032, Caen, France.
Synergie Mer et littoral (SMEL), Zac de Blainville, F-50560, Blainville-sur-Mer, France.
Environ Sci Pollut Res Int. 2023 Sep;30(45):101535-101545. doi: 10.1007/s11356-023-29566-7. Epub 2023 Aug 31.
As the most abundant metal in the earth's crust, aluminum (Al) is used in many sectors, and nowadays, there is an increase in anthropogenic releases to aquatic ecosystems. This is particularly true in the context of corrosion protection systems involving galvanic anodes, which are mostly made of Al. Corroded instead of the steel structures they protect, galvanic anodes are described as sacrificial anodes. In contact with seawater, they undergo oxidation and release various metals in the form of ions or oxy-hydroxides into the marine environment, mainly Al and zinc (Zn). Several studies agree that Al increases the incidence of abnormal development in bivalve larvae from 150 μg L which is close to the highest Al concentrations recorded in coastal waters. Therefore, we studied the impact of the cocktail of metals released by aluminum-based galvanic anodes on the development of Crassostrea gigas larvae, which we compared to the effects of aluminum chloride hexahydrate and zinc chloride alone and their mixture. The anode solution was realized thanks to an experimental device simulating the dissolution of a galvanic anode in the marine environment in order to reproduce the cocktail of metal species. We calculated an EC of 193.55 μg L and 100.05 μg L for Al and Zn chloride alone, respectively, and we highlighted an EC of 190.22 μg L for the galvanic anode based on Al concentration. The mixture of the two metals in their chloride form resulted in the observation of additive and synergistic effects, which underlines the importance of considering the cocktail effect in ecotoxicological studies.
作为地壳中最丰富的金属,铝(Al)被广泛应用于许多领域,而如今,人为向水生生态系统排放的铝量有所增加。在涉及使用锌合金或铝合金牺牲阳极的防腐系统中尤其如此,这些阳极主要由铝制成。牺牲阳极会代替被保护的钢结构发生腐蚀,因此被描述为牺牲阳极。在与海水接触时,它们会发生氧化,并以离子或氢氧化物的形式将各种金属释放到海洋环境中,主要是铝和锌(Zn)。多项研究表明,当铝浓度达到 150μg/L 时,铝会增加双壳贝类幼虫异常发育的发生率,这一浓度接近沿海水域中记录到的最高铝浓度。因此,我们研究了铝合金牺牲阳极释放的金属混合物对海湾扇贝幼虫发育的影响,并将其与单独的六水合氯化铝和氯化锌以及它们的混合物的影响进行了比较。通过一种实验装置模拟了在海洋环境中牺牲阳极的溶解,从而实现了阳极溶液的制备,以重现金属种类的混合物。我们分别计算出单独的六水合氯化铝和氯化锌的 EC 值为 193.55μg/L 和 100.05μg/L,而基于铝浓度的铝合金牺牲阳极的 EC 值为 190.22μg/L。这两种金属以其氯化物形式混合,观察到了相加和协同作用,这强调了在生态毒理学研究中考虑鸡尾酒效应的重要性。