Suppr超能文献

高级氧化工艺(AOPs)在工业应用中的可扩展性:综述。

Scalability of advanced oxidation processes (AOPs) in industrial applications: A review.

机构信息

Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray Park Campus, 70-104 Ballarat Road, Footscray, 3011, Australia; First Year College, Victoria University, Footscray Park Campus, 70-104 Ballarat Road, Footscray, 3011, Australia.

Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray Park Campus, 70-104 Ballarat Road, Footscray, 3011, Australia.

出版信息

J Environ Manage. 2023 Nov 1;345:118861. doi: 10.1016/j.jenvman.2023.118861. Epub 2023 Aug 29.

Abstract

Disinfection and decontamination of water by application of oxidisers is an essential treatment step across numerous industrial sectors including potable supply and industry waste management, however, could be greatly enhanced if operated as advanced oxidation processes (AOPs). AOPs destroy contaminants including pathogens by uniquely harnessing radical chemistry. Despite AOPs offer great practical opportunities, no reviews to date have highlighted the critical AOP virtues that facilitate AOPs' scale up under growing industrial demand. Hence, this review analyses the critical AOP parameters such as oxidant conversion efficiency, batch mode vs continuous-flow systems, location of radical production, radical delivery by advanced micro-/mesoporous structures and AOP process costs to assist the translation of progressing developments of AOPs into their large-scale applications. Additionally, the state of the art is analysed for various AOP inducing radical/oxidiser measurement techniques and their half-lives with a view to identify radicals/oxidisers that are suitable for in-situ production. It is concluded that radicals with short half-lives such as hydroxyl (10 μsec) and sulfate (30-40 μsec) need to be produced in-situ via continuous-flow reactors for their effective transport and dosing. Meanwhile, radicals/oxidisers with longer half-lives such as ozone (7-10 min), hydrogen peroxide (stable for several hours), and hypochlorous acid (10 min -17 h) need to be applied through batch reactor systems due to their relatively longer stability during transportation and dosing. Complex and costly synthesis as well as cytotoxicity of many micro-/mesoporous structures limit their use in scaling up AOPs, particularly to immobilising and delivering the short-lived hydroxyl and sulfate radicals to their point of applications. Overall, radical delivery using safe and advanced biocompatible micro-/mesoporous structures, radical conversion efficiency using advanced reactor design and portability of AOPs are priority areas of development for scaling up to industry.

摘要

通过应用氧化剂对水进行消毒和去污是许多工业领域(包括饮用水供应和工业废物管理)的基本处理步骤,但如果作为高级氧化工艺(AOPs)运行,效果会大大增强。AOP 通过独特地利用自由基化学来破坏包括病原体在内的污染物。尽管 AOP 提供了巨大的实际机会,但迄今为止,没有评论强调促进 AOP 适应不断增长的工业需求而扩大规模的关键 AOP 优点。因此,本综述分析了关键的 AOP 参数,例如氧化剂转化率、批处理模式与连续流动系统、自由基产生的位置、通过先进的微/介孔结构输送自由基以及 AOP 过程成本,以帮助将 AOP 的进展转化为其大规模应用。此外,还分析了各种 AOP 诱导自由基/氧化剂测量技术及其半衰期的最新技术状态,以期确定适合原位生产的自由基/氧化剂。结论是,需要通过连续流动反应器就地生产半衰期较短的自由基,如羟基(10 μsec)和硫酸盐(30-40 μsec),以实现其有效传输和投加。同时,半衰期较长的自由基/氧化剂,如臭氧(7-10 分钟)、过氧化氢(稳定数小时)和次氯酸(10 分钟-17 小时),需要通过批处理反应器系统应用,因为它们在运输和投加过程中相对更稳定。许多微/介孔结构的复杂和昂贵的合成以及细胞毒性限制了它们在 AOP 扩大规模方面的应用,特别是将短寿命的羟基和硫酸盐自由基固定并输送到其应用点。总的来说,使用安全和先进的生物相容性微/介孔结构输送自由基、通过先进的反应器设计提高自由基转化率效率以及提高 AOP 的便携性是扩大规模到工业领域的优先发展领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验