Suppr超能文献

NeuXus 开源工具,用于实时减少 EEG-fMRI 中的伪影。

NeuXus open-source tool for real-time artifact reduction in simultaneous EEG-fMRI.

机构信息

ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal.

ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal.

出版信息

Neuroimage. 2023 Oct 15;280:120353. doi: 10.1016/j.neuroimage.2023.120353. Epub 2023 Aug 29.

Abstract

The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) allows the complementary study of the brain's electrophysiology and hemodynamics with high temporal and spatial resolution. One application with great potential is neurofeedback training of targeted brain activity, based on the real-time analysis of the EEG and/or fMRI signals. This depends on the ability to reduce in real time the severe artifacts affecting the EEG signal acquired with fMRI, mainly the gradient and pulse artifacts. A few methods have been proposed for this purpose, but they are either slow, hardware-dependent, publicly unavailable, or proprietary software. Here, we present a fully open-source and publicly available tool for real-time EEG artifact reduction in simultaneous EEG-fMRI recordings that is fast and applicable to any hardware. Our tool is integrated in the Python toolbox NeuXus for real-time EEG processing and adapts to a real-time scenario well-established artifact average subtraction methods combined with a long short-term memory network for R peak detection. We benchmarked NeuXus on three different datasets, in terms of artifact power reduction and background signal preservation in resting state, alpha-band power reactivity to eyes closure, and event-related desynchronization during motor imagery. We showed that NeuXus performed at least as well as the only available real-time tool for conventional hardware setups (BrainVision's RecView) and a well-established offline tool (EEGLAB's FMRIB plugin). We also demonstrated NeuXus' real-time ability by reporting execution times under 250 ms. In conclusion, we present and validate the first fully open-source and hardware-independent solution for real-time artifact reduction in simultaneous EEG-fMRI studies.

摘要

同时采集脑电图和功能磁共振成像(EEG-fMRI)允许以高时间和空间分辨率互补地研究大脑的电生理学和血液动力学。一个具有巨大潜力的应用是基于 EEG 和/或 fMRI 信号的实时分析,对目标脑活动进行神经反馈训练。这取决于实时减少严重影响 fMRI 采集的 EEG 信号的伪影的能力,主要是梯度和脉冲伪影。为此已经提出了几种方法,但它们要么速度慢,要么依赖于硬件,要么不可公开使用,要么是专有的软件。在这里,我们提出了一种用于实时 EEG-fMRI 记录中 EEG 伪影实时减少的完全开源和可公开获取的工具,该工具速度快,适用于任何硬件。我们的工具集成在用于实时 EEG 处理的 Python 工具包 NeuXus 中,适用于与实时场景相结合的基于传统硬件设置的(BrainVision 的 RecView)和成熟的离线工具(EEGLAB 的 FMRIB 插件)的已建立的伪影平均减法方法和长短期记忆网络进行 R 波峰检测。我们根据静息状态下的伪影功率降低和背景信号保留、闭眼时的 alpha 波段功率反应性以及运动想象期间的事件相关去同步化,在三个不同的数据集上对 NeuXus 进行了基准测试。我们表明,NeuXus 的性能至少与传统硬件设置的唯一可用实时工具(BrainVision 的 RecView)和成熟的离线工具(EEGLAB 的 FMRIB 插件)一样好。我们还通过报告低于 250 毫秒的执行时间,展示了 NeuXus 的实时能力。总之,我们提出并验证了第一个用于实时 EEG-fMRI 研究中实时伪影减少的完全开源和硬件独立的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验