Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
Osteoarthritis Cartilage. 2023 Nov;31(11):1481-1490. doi: 10.1016/j.joca.2023.08.004. Epub 2023 Aug 29.
Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-β can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-β-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling.
Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-β. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-β-induced chondrocyte hypertrophy.
Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-β, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-β-induced RUNX2 than blocking both SMAD pathways.
Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-β's detrimental from protective function in chondrocytes.
转化生长因子-β(TGF-β)通过 SMAD2/3 的信号转导对于控制软骨稳态至关重要。然而,TGF-β 也可以通过 SMAD1/5/9 信号转导产生有害影响,从而导致骨关节炎(OA)等疾病。在这项研究中,我们旨在阻断原代人 OA 软骨细胞中 TGF-β 诱导的 SMAD1/5/9 信号转导,同时保持功能性 SMAD2/3 信号转导。
在 TGF-β 刺激前,用人 OA 软骨细胞预孵育不同浓度的ALK4/5/7 激酶抑制剂 SB-505124。用 Western blot 分析 SMAD C 端磷酸化的变化,用定量聚合酶链反应测量反应基因。为了进一步探索我们分离途径的能力的后果,我们研究了 TGF-β 诱导的软骨细胞肥大。
用 0.5µM SB-505124 预孵育,保持了 SMAD2/3 的 C 端磷酸化和 JUNB 和 SERPINE1 的诱导±50%,但阻断了 SMAD1/5/9-C 的磷酸化和 ID1 和 ID3 的表达。此外,TGF-β在与 OA 患者滑液中相似的水平下,导致 OA 软骨细胞中肥大和去分化标志物的调节;即 COL10、RUNX2、COL1A1 和 VEGF 的增加和 ACAN 表达的减少。有趣的是,在 OA 软骨细胞供体的亚组中,仅阻断 SMAD1/5/9 比阻断两条 SMAD 途径对 TGF-β诱导的 RUNX2 的抑制作用更强。
我们的研究结果表明,使用低剂量的 SB-505124,我们维持了功能性 SMAD2/3 信号转导,在亚组 OA 患者中阻断了 RUNX2 的表达。我们是第一个表明 SMAD2/3 和 SMAD1/5/9 途径可以分别通过使用低剂量和高剂量的 SB-505124 进行调节,从而将 TGF-β 在软骨细胞中的有害和保护功能分开。