Vance Brandon C, Najmi Sean, Kots Pavel A, Wang Cong, Jeon Sungho, Stach Eric A, Zakharov Dmitri N, Marinkovic Nebojsa, Ehrlich Steven N, Ma Lu, Vlachos Dionisios G
Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States.
Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
JACS Au. 2023 Jul 14;3(8):2156-2165. doi: 10.1021/jacsau.3c00232. eCollection 2023 Aug 28.
Earth-abundant metals have recently been demonstrated as cheap catalyst alternatives to scarce noble metals for polyethylene hydrogenolysis. However, high methane selectivities hinder industrial feasibility. Herein, we demonstrate that low-temperature ex-situ reduction (350 °C) of coprecipitated nickel aluminate catalysts yields a methane selectivity of <5% at moderate polymer deconstruction (25-45%). A reduction temperature up to 550 °C increases the methane selectivity nearly sevenfold. Catalyst characterization (XRD, XAS, Al MAS NMR, H TPR, XPS, and CO-IR) elucidates the complex process of Ni nanoparticle formation, and air-free XPS directly after reaction reveals tetrahedrally coordinated Ni cations promote methane production. Metallic and the specific cationic Ni appear responsible for hydrogenolysis of internal and terminal C-C scissions, respectively. A structure-methane selectivity relationship is discovered to guide the design of Ni-based catalysts with low methane generation. It paves the way for discovering other structure-property relations in plastics hydrogenolysis. These catalysts are also effective for polypropylene hydrogenolysis.
最近已证明,在地壳中储量丰富的金属可作为稀缺贵金属的廉价催化剂替代品,用于聚乙烯氢解反应。然而,高甲烷选择性阻碍了其工业可行性。在此,我们证明,共沉淀铝酸镍催化剂在低温非原位还原(350℃)条件下,在中等程度的聚合物解构(25 - 45%)时,甲烷选择性小于5%。还原温度高达550℃时,甲烷选择性增加近七倍。催化剂表征(XRD、XAS、Al MAS NMR、H TPR、XPS和CO-IR)阐明了镍纳米颗粒形成的复杂过程,反应后直接进行的无氧XPS分析表明,四面体配位的镍阳离子会促进甲烷生成。金属态镍和特定的阳离子态镍分别似乎是内部和末端碳 - 碳键断裂氢解反应的原因。发现了一种结构 - 甲烷选择性关系,以指导低甲烷生成的镍基催化剂的设计。这为发现塑料氢解反应中的其他结构 - 性能关系铺平了道路。这些催化剂对聚丙烯氢解反应也有效。