Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.
Centre de Recherche sur le Cancer, Université Laval, Québec City, Québec, Canada.
Cancer Res. 2023 Sep 1;83(17):2809-2810. doi: 10.1158/0008-5472.CAN-23-1856.
Despite years of progress, we still lack reliable tools to predict the aggressiveness of tumors, including in the case of prostate cancer. Biomarkers have been developed, but they often suffer from poor accuracy if used alone due to tumor heterogeneity. Nevertheless, some mutations, notably TP53 mutations, are highly correlated with progression. In their work in this issue of Cancer Research, Pizurica and colleagues implemented a machine learning-based model applied to routine histology and trained with prior information on TP53 mutation status. Their model output provides a quantitative prediction of TP53 mutation status while having a strong correlation with aggressiveness, showing promise as a prognostic in silico biomarker. See related article by Pizurica et al., p. 2970.
尽管取得了多年的进展,但我们仍然缺乏可靠的工具来预测肿瘤的侵袭性,包括前列腺癌。已经开发出了生物标志物,但由于肿瘤异质性,单独使用时它们的准确性往往较差。然而,一些突变,特别是 TP53 突变,与进展高度相关。在本期《癌症研究》杂志上的工作中,皮祖里卡及其同事实施了一种基于机器学习的模型,该模型应用于常规组织学,并使用有关 TP53 突变状态的先验信息进行训练。他们的模型输出提供了 TP53 突变状态的定量预测,同时与侵袭性具有很强的相关性,有望成为一种预测性的计算生物标志物。请参阅皮祖里卡等人的相关文章,第 2970 页。