Gupta Nitant, Jayaraman Arthi
Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE 19716, USA.
Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, DE 19716, USA.
Nanoscale. 2023 Sep 21;15(36):14958-14970. doi: 10.1039/d3nr02425c.
The macroscopic properties of materials are governed by their microscopic structure which depends on the materials' composition (, building blocks) and processing conditions. In many classes of synthetic, bioinspired, or natural soft and/or nanomaterials, one can find structural anisotropy in the microscopic structure due to anisotropic building blocks and/or anisotropic domains formed through the processing conditions. Experimental characterization and complementary physics-based or data-driven modeling of materials' structural anisotropy are critical for understanding structure-property relationships and enabling targeted design of materials with desired macroscopic properties. In this pursuit, to interpret experimentally obtained characterization results (, scattering profiles) of soft materials with structural anisotropy using data-driven computational approaches, there is a need for creating real space three-dimensional structures of the designer soft materials with realistic physical features (, dispersity in building block sizes) and anisotropy (, aspect ratios of the building blocks, their orientational and positional order). These real space structures can then be used to compute and complement experimentally obtained characterization results or be used as initial configurations for physics-based simulations/calculations that can then provide training data for machine learning models. To address this need, we present a new computational approach called CASGAP - Computational Approach for Structure Generation of Anisotropic Particles - for generating any desired three dimensional real-space structure of anisotropic building blocks (modeled as particles) adhering to target distributions of particle shape, size, and positional and orientational order.
材料的宏观性质由其微观结构决定,而微观结构又取决于材料的组成(即构建单元)和加工条件。在许多类合成材料、仿生材料或天然软材料和/或纳米材料中,由于各向异性的构建单元和/或通过加工条件形成的各向异性区域,在微观结构中可以发现结构各向异性。对材料结构各向异性进行实验表征以及基于物理或数据驱动的补充建模,对于理解结构-性能关系以及实现具有所需宏观性质的材料的定向设计至关重要。在这一过程中,为了使用数据驱动的计算方法解释具有结构各向异性的软材料的实验表征结果(即散射轮廓),需要创建具有现实物理特征(即构建单元尺寸的分散性)和各向异性(即构建单元的纵横比、它们的取向和位置有序性)的设计软材料的真实空间三维结构。然后,这些真实空间结构可用于计算并补充实验获得的表征结果,或用作基于物理的模拟/计算的初始构型,进而为机器学习模型提供训练数据。为满足这一需求,我们提出了一种名为CASGAP的新计算方法——各向异性粒子结构生成计算方法——用于生成符合粒子形状、尺寸以及位置和取向有序性目标分布的各向异性构建单元(建模为粒子)的任何所需三维真实空间结构。