Suppr超能文献

基于金刚石的集成检测系统,用于放射治疗离子束的剂量学和微剂量学特性描述。

Diamond based integrated detection system for dosimetric and microdosimetric characterization of radiotherapy ion beams.

机构信息

Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy.

Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.

出版信息

Med Phys. 2024 Jan;51(1):533-544. doi: 10.1002/mp.16698. Epub 2023 Sep 1.

Abstract

BACKGROUND

Ion beam therapy allows for a substantial sparing of normal tissues and higher biological efficacy. Synthetic single crystal diamond is a very good material to produce high-spatial-resolution and highly radiation hard detectors for both dosimetry and microdosimetry in ion beam therapy.

PURPOSE

The aim of this work is the design, fabrication and test of an integrated waterproof detector based on synthetic single crystal diamond able to simultaneously perform dosimetric and microdosimetric characterization of clinical ion beams.

METHODS

The active elements of the integrated diamond device, that is, dosimeter and microdosimeter, were both realized in a Schottky diode configuration featured by different area, thickness, and shape by means of photolithography technologies for the selective growth of intrinsic and boron-doped CVD diamond. The cross-section of the sensitive volume of the dosimetric element is 4 mm and 1 μm-thick, while the microdosimetric one has an active cross-sectional area of 100 × 100 μm and a thickness of about 6.2 μm. The dosimetric and microdosimetric performance of the developed device was assessed at different depths in a water phantom at the MedAustron ion beam therapy facility using a monoenergetic uniformly scanned carbon ion beam of 284.7 MeV/u and proton beam of 148.7 MeV. The particle flux in the region of the microdosimeter was 6·10  cm /s for both irradiation fields. At each depth, dose and dose distributions in lineal energy were measured simultaneously and the dose mean lineal energy values were then calculated. Monte Carlo simulations were also carried out by using the GATE-Geant4 code to evaluate the relative dose, dose averaged linear energy transfer (LET ), and microdosimetric spectra at various depths in water for the radiation fields used, by considering the contribution from the secondary particles generated in the ion interaction processes as well.

RESULTS

Dosimetric and microdosimetric quantities were measured by the developed prototype with relatively low noise (∼2 keV/μm). A good agreement between the measured and simulated dose profiles was found, with discrepancies in the peak to plateau ratio of about 3% and 4% for proton and carbon ion beams respectively, showing a negligible LET dependence of the dosimetric element of the device. The microdosimetric spectra were validated with Monte Carlo simulations and a good agreement between the spectra shapes and positions was found. Dose mean lineal energy values were found to be in close agreement with those reported in the literature for clinical ion beams, showing a sharp increase along the Bragg curve, being also consistent with the calculated LET for all depths within the experimental error of 10%.

CONCLUSIONS

The experimental indicate that the proposed device can allow enhanced dosimetry in particle therapy centers, where the absorbed dose measurement is implemented by the microdosimetric characterization of the radiation field, thus providing complementary results. In addition, the proposed device allows for the reduction of the experimental uncertainties associated with detector positioning and could facilitate the partial overcoming of some drawbacks related to the low sensitivity of diamond microdosimeters to low LET radiation.

摘要

背景

离子束治疗可以大量减少正常组织的辐射剂量,并提高生物疗效。合成单晶金刚石是一种非常好的材料,可用于制造高空间分辨率和高度辐射硬度的探测器,用于离子束治疗中的剂量测量和微剂量测量。

目的

本工作的目的是设计、制造和测试一种基于合成单晶金刚石的集成防水探测器,该探测器能够同时对临床离子束进行剂量测量和微剂量测量。

方法

集成金刚石器件的有源元件,即剂量计和微剂量计,都是通过光刻技术在肖特基二极管结构中实现的,其特点是面积、厚度和形状不同,用于选择性生长本征和硼掺杂 CVD 金刚石。剂量计元件的敏感体积的横截面为 4mm 和 1μm 厚,而微剂量计的有效横截面面积为 100μm×100μm,厚度约为 6.2μm。在 MedAustron 离子束治疗设施中,使用能量为 284.7MeV/u 的单能均匀扫描碳离子束和 148.7MeV 的质子束,在水模体的不同深度处评估了所开发设备的剂量测量和微剂量测量性能。在微剂量计区域的粒子通量对于两种辐照场都是 6×10 厘米 /秒。在每个深度处,同时测量线性能量和剂量分布,并计算平均线性能量值。还通过使用 GATE-Geant4 代码进行蒙特卡罗模拟,考虑到离子相互作用过程中产生的次级粒子的贡献,评估了在使用的辐射场中,在水中不同深度处的相对剂量、剂量平均线性能量转移 (LET) 和微剂量谱。

结果

所开发的原型机具有相对较低的噪声(约 2keV/μm),可以测量剂量和微剂量。发现测量和模拟的剂量分布之间存在良好的一致性,质子和碳离子束的峰值与平台比的差异分别约为 3%和 4%,表明器件的剂量计元件对 LET 的依赖性可以忽略不计。微剂量谱与蒙特卡罗模拟验证一致,谱形状和位置一致。发现平均线性能量值与临床离子束的文献报道值非常吻合,沿布拉格曲线急剧增加,与实验误差为 10%的所有深度处的计算 LET 也一致。

结论

实验表明,所提出的设备可以在粒子治疗中心增强剂量测量,通过辐射场的微剂量测量来实现吸收剂量测量,从而提供补充结果。此外,所提出的设备可以减少与探测器定位相关的实验不确定性,并可能有助于部分克服与金刚石微剂量计对低 LET 辐射的低灵敏度相关的一些缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验