Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
Cell Rep. 2023 Sep 26;42(9):113068. doi: 10.1016/j.celrep.2023.113068. Epub 2023 Aug 31.
Primary somatosensory axons stop regenerating as they re-enter the spinal cord, resulting in incurable sensory loss. What arrests them has remained unclear. We previously showed that axons stop by forming synaptic contacts with unknown non-neuronal cells. Here, we identified these cells in adult mice as oligodendrocyte precursor cells (OPCs). We also found that only a few axons stop regenerating by forming dystrophic endings, exclusively at the CNS:peripheral nervous system (PNS) borderline where OPCs are absent. Most axons stop in contact with a dense network of OPC processes. Live imaging, immuno-electron microscopy (immuno-EM), and OPC-dorsal root ganglia (DRG) co-culture additionally suggest that axons are rapidly immobilized by forming synapses with OPCs. Genetic OPC ablation enables many axons to continue regenerating deep into the spinal cord. We propose that sensory axons stop regenerating by encountering OPCs that induce presynaptic differentiation. Our findings identify OPCs as a major regenerative barrier that prevents intraspinal restoration of sensory circuits following spinal root injury.
初级躯体感觉轴突在重新进入脊髓时停止再生,导致不可治愈的感觉丧失。阻止它们的原因尚不清楚。我们之前曾表明,轴突通过与未知的非神经元细胞形成突触接触而停止。在这里,我们在成年小鼠中鉴定出这些细胞为少突胶质前体细胞(OPC)。我们还发现,只有少数轴突通过形成营养不良的末端停止再生,仅在中枢神经系统(CNS):外周神经系统(PNS)边界处没有 OPC。大多数轴突与 OPC 过程的密集网络接触。实时成像、免疫电子显微镜(immuno-EM)和 OPC-背根神经节(DRG)共培养进一步表明,轴突通过与 OPC 形成突触而迅速固定。遗传 OPC 消融使许多轴突能够继续深入脊髓再生。我们提出,感觉轴突通过遇到诱导突触前分化的 OPC 而停止再生。我们的发现确定 OPC 是阻止脊髓神经根损伤后脊髓内感觉回路恢复的主要再生障碍。