Suppr超能文献

进化图论中的自环:是敌是友?

Self-loops in evolutionary graph theory: Friends or foes?

机构信息

Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.

出版信息

PLoS Comput Biol. 2023 Sep 1;19(9):e1011387. doi: 10.1371/journal.pcbi.1011387. eCollection 2023 Sep.

Abstract

Evolutionary dynamics in spatially structured populations has been studied for a long time. More recently, the focus has been to construct structures that amplify selection by fixing beneficial mutations with higher probability than the well-mixed population and lower probability of fixation for deleterious mutations. It has been shown that for a structure to substantially amplify selection, self-loops are necessary when mutants appear predominately in nodes that change often. As a result, for low mutation rates, self-looped amplifiers attain higher steady-state average fitness in the mutation-selection balance than well-mixed populations. But what happens when the mutation rate increases such that fixation probabilities alone no longer describe the dynamics? We show that self-loops effects are detrimental outside the low mutation rate regime. In the intermediate and high mutation rate regime, amplifiers of selection attain lower steady-state average fitness than the complete graph and suppressors of selection. We also provide an estimate of the mutation rate beyond which the mutation-selection dynamics on a graph deviates from the weak mutation rate approximation. It involves computing average fixation time scaling with respect to the population sizes for several graphs.

摘要

长期以来,人们一直在研究具有空间结构的种群的进化动态。最近,人们的关注点集中在构建能够通过更高的概率固定有益突变,同时降低有害突变固定概率的结构上,从而放大选择的力度。已经表明,当突变体主要出现在经常变化的节点时,自我循环是必要的,以便结构能够显著放大选择。因此,在低突变率下,自我循环放大器在突变-选择平衡中达到比混合种群更高的稳态平均适应度。但是,当突变率增加到仅固定概率不再描述动力学时会发生什么?我们表明,在低突变率范围之外,自我循环的影响是有害的。在中高突变率范围内,选择放大器的稳态平均适应度低于完全图和选择抑制剂。我们还提供了一个突变率的估计值,超过该值后,图上的突变-选择动力学将偏离弱突变率近似值。这涉及到计算几个图的平均固定时间与种群大小的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c567/10501642/2b6ff6d29dbf/pcbi.1011387.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验