Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, 50009, Spain.
Department of Theoretical Physics, University of Zaragoza, Zaragoza, 50009, Spain.
Nat Commun. 2023 Sep 1;14(1):5312. doi: 10.1038/s41467-023-40976-6.
In tuberculosis (TB) vaccine development, multiple factors hinder the design and interpretation of the clinical trials used to estimate vaccine efficacy. The complex transmission chain of TB includes multiple routes to disease, making it hard to link the vaccine efficacy observed in a trial to specific protective mechanisms. Here, we present a Bayesian framework to evaluate the compatibility of different vaccine descriptions with clinical trial outcomes, unlocking impact forecasting from vaccines whose specific mechanisms of action are unknown. Applying our method to the analysis of the M72/AS01 vaccine trial -conducted on IGRA+ individuals- as a case study, we found that most plausible models for this vaccine needed to include protection against, at least, two over the three possible routes to active TB classically considered in the literature: namely, primary TB, latent TB reactivation and TB upon re-infection. Gathering new data regarding the impact of TB vaccines in various epidemiological settings would be instrumental to improve our model estimates of the underlying mechanisms.
在结核病(TB)疫苗开发中,多个因素阻碍了用于评估疫苗效力的临床试验的设计和解释。TB 的复杂传播链包括多种疾病途径,因此很难将试验中观察到的疫苗效力与特定的保护机制联系起来。在这里,我们提出了一个贝叶斯框架来评估不同疫苗描述与临床试验结果的兼容性,从而可以从作用机制未知的疫苗中预测其影响。我们将该方法应用于 M72/AS01 疫苗试验的分析——该试验针对 IGRA+个体进行——作为一个案例研究,我们发现,对于该疫苗,最合理的模型需要至少包括对三种可能的 TB 发病途径中的两种进行保护:即原发性 TB、潜伏性 TB 再激活和再感染性 TB。在各种流行病学环境中收集有关 TB 疫苗影响的新数据,对于改进我们对潜在机制的模型估计将非常重要。