Institute for Bio-computation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
Department of Theoretical Physics, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain.
Nat Commun. 2019 Nov 29;10(1):5457. doi: 10.1038/s41467-019-13387-9.
In Tuberculosis (TB), given the complexity of its transmission dynamics, observations of reduced epidemiological risk associated with preventive interventions can be difficult to translate into mechanistic interpretations. Specifically, in clinical trials of vaccine efficacy, a readout of protection against TB disease can be mapped to multiple dynamical mechanisms, an issue that has been overlooked so far. Here, we describe this limitation and its effect on model-based evaluations of vaccine impact. Furthermore, we propose a methodology to analyze efficacy trials that circumvents it, leveraging a combination of compartmental models and stochastic simulations. Using our approach, we can disentangle the different possible mechanisms of action underlying vaccine protection effects against TB, conditioned to trial design, size, and duration. Our results unlock a deeper interpretation of the data emanating from efficacy trials of TB vaccines, which renders them more interpretable in terms of transmission models and translates into explicit recommendations for vaccine developers.
在结核病 (TB) 中,由于其传播动态的复杂性,观察到与预防干预相关的流行病学风险降低可能难以转化为机制解释。具体来说,在疫苗功效的临床试验中,对结核病疾病的保护作用的结果可以映射到多个动态机制,到目前为止,这个问题一直被忽视。在这里,我们描述了这种局限性及其对基于模型的疫苗影响评估的影响。此外,我们提出了一种分析功效试验的方法来规避这个问题,利用了房室模型和随机模拟的组合。使用我们的方法,我们可以根据试验设计、规模和持续时间,将疫苗保护作用对结核病的不同可能作用机制分开。我们的结果为结核病疫苗功效试验产生的数据提供了更深入的解释,使其更能根据传播模型进行解释,并转化为对疫苗开发者的明确建议。