Suppr超能文献

生长在等离子体诱导的W锚定石墨烯上的MoS纳米花用于通过海水电解高效稳定地制氢。

MoS Nanoflowers Grown on Plasma-Induced W-Anchored Graphene for Efficient and Stable H Production Through Seawater Electrolysis.

作者信息

Dang Van Dien, Putikam Raghunath, Lin Ming-Chang, Wei Kung-Hwa

机构信息

Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Ho Chi Minh, 700000, Vietnam.

Department of Applied Chemistry, Center for Interdisciplinary Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.

出版信息

Small. 2024 Jan;20(2):e2305220. doi: 10.1002/smll.202305220. Epub 2023 Sep 1.

Abstract

Herein, it is found that 3D transition metal dichalcogenide (TMD)-MoS nanoflowers-grown on 2D tungsten oxide-anchored graphene nanosheets (MoS @W-G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS @W-G (MoS :W-G/1.5:1) in 0.5 M H SO achieves a low overpotential of 78 mV at 10 mA cm , a small Tafel slope of 48 mV dec , and a high exchange current density (0.321 mA cm⁻ ). Furthermore, the same MoS @W-G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS @W-G structure model confirm that suitable hybridization of 3D MoS and 2D W-G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆G ) from 1.89 eV for MoS to -0.13 eV for the MoS @W-G composite. The excellent HER activity of the 3D/2D hybridized MoS @W-G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.

摘要

在此,发现生长在二维氧化钨锚定的石墨烯纳米片(MoS₂@W-G)上的三维过渡金属二硫属化物(TMD)-MoS₂纳米花在酸性和碱性条件下均作为析氢反应(HER)的优异催化剂。在0.5 M H₂SO₄中,优化后的MoS₂@W-G(MoS₂:W-G/1.5:1)重量比在10 mA cm⁻²时实现了78 mV的低过电位、48 mV dec⁻¹的小塔菲尔斜率和0.321 mA cm⁻²的高交换电流密度。此外,相同的MoS₂@W-G复合材料在使用实际海水时表现出稳定的HER性能,在酸性和碱性介质中的法拉第效率分别为96%和94%。基于混合MoS₂@W-G结构模型的密度泛函理论计算证实,三维MoS₂和二维W-G纳米片的适当杂化可将氢吸附的吉布斯自由能(∆G)从MoS₂的1.89 eV降低至MoS₂@W-G复合材料的-0.13 eV。三维/二维杂化的MoS₂@W-G复合材料优异的HER活性源于大量的活性异质结构界面,优化了电子构型,从而加速了H₂O的吸附和解离。这些发现为合理开发用于海水HER应用的替代三维/二维TMD/石墨烯电催化剂提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验