Suppr超能文献

用于高效全水分解的碳纤维上的石墨烯/MoS/FeCoNi(OH)和石墨烯/MoS/FeCoNiP多层堆叠垂直纳米片。

Graphene/MoS/FeCoNi(OH) and Graphene/MoS/FeCoNiP multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting.

作者信息

Ji Xixi, Lin Yanhong, Zeng Jie, Ren Zhonghua, Lin Zijia, Mu Yongbiao, Qiu Yejun, Yu Jie

机构信息

Shenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen, China.

出版信息

Nat Commun. 2021 Mar 2;12(1):1380. doi: 10.1038/s41467-021-21742-y.

Abstract

Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)) are successively grown on carbon fibers (CF/VGSs/MoS/FeCoNi(OH)). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm and small Tafel slope of 29.2 mV dec. Theoretical calculation indicates that compositing of FeCoNi(OH) with MoS could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS/FeCoNi(OH) anode for overall water splitting, which generates a current density of 100 mA cm at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis.

摘要

开发性能优异且成本低廉的水电解电催化剂对于氢能应用具有重要意义。在此,我们展示了一种具有多层堆叠混合结构的高效稳定析氧反应(OER)催化剂,其中垂直石墨烯纳米片(VGSs)、MoS纳米片和层状氢氧化铁钴镍(FeCoNi(OH))依次生长在碳纤维上(CF/VGSs/MoS/FeCoNi(OH))。该催化剂表现出优异的OER性能,在达到500和1000 mA cm时过电位分别低至225和241 mV,塔菲尔斜率小至29.2 mV dec。理论计算表明,FeCoNi(OH)与MoS复合可产生有利的电子结构并降低OER过电位,从而提高电催化活性。使用CF/VGSs/MoS/FeCoNi(OH)阳极建立了碱性水电解槽用于全水分裂,在1.59 V时产生100 mA cm的电流密度,且在100 h以上具有优异的稳定性。我们的高效催化剂在水电解方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d31/7925597/2522e71fdfc7/41467_2021_21742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验