文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

JARID2与核小体重塑去乙酰化酶复合物协同作用,通过对脂肪细胞衍生的瘦素作出反应促进乳腺肿瘤发生。

JARID2 coordinates with the NuRD complex to facilitate breast tumorigenesis through response to adipocyte-derived leptin.

作者信息

Liu Wei, Zeng Yi, Hao Xinhui, Wang Xin, Liu Jiaxiang, Gao Tianyang, Wang Mengdi, Zhang Jingyao, Huo Miaomiao, Hu Ting, Ma Tianyu, Zhang Die, Teng Xu, Yu Hefen, Zhang Min, Yuan Baowen, Huang Wei, Yang Yunkai, Wang Yan

机构信息

Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China.

Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.

出版信息

Cancer Commun (Lond). 2023 Oct;43(10):1117-1142. doi: 10.1002/cac2.12479. Epub 2023 Sep 1.


DOI:10.1002/cac2.12479
PMID:37658635
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10565380/
Abstract

BACKGROUND: Proteins containing the Jumonji C (JmjC) domain participated in tumorigenesis and cancer progression. However, the mechanisms underlying this effect are still poorly understood. Our objective was to investigate the role of Jumonji and the AT-rich interaction domain-containing 2 (JARID2) - a JmjC family protein - in breast cancer, as well as its latent association with obesity. METHODS: Immunohistochemistry, The Cancer Genome Atlas, Gene Expression Omnibus, and other databases were used to analyze the expression of JARID2 in breast cancer cells. Growth curve, 5-ethynyl-2-deoxyuridine (EdU), colony formation, and cell invasion experiments were used to detect whether JARID2 affected breast cancer cell proliferation and invasion. Spheroidization-based experiments and xenotumor transplantation in NOD/SCID mice were used to examine the association between JARID2 and breast cancer stemness. RNA-sequencing, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the cell processes in which JARID2 participates. Immunoaffinity purification and silver staining mass spectrometry were conducted to search for proteins that might interact with JARID2. The results were further verified using co-immunoprecipitation and glutathione S-transferase (GST) pull-down experiments. Using chromatin immunoprecipitation (ChIP) sequencing, we sought the target genes that JARID2 and metastasis-associated protein 1 (MTA1) jointly regulated; the results were validated by ChIP-PCR, quantitative ChIP (qChIP) and ChIP-reChIP assays. A coculture experiment was used to explore the interactions between breast cancer cells and adipocytes. RESULTS: In this study, we found that JARID2 was highly expressed in multiple types of cancer including breast cancer. JARID2 promoted glycolysis, lipid metabolism, proliferation, invasion, and stemness of breast cancer cells. Furthermore, JARID2 physically interacted with the nucleosome remodeling and deacetylase (NuRD) complex, transcriptionally repressing a series of tumor suppressor genes such as BRCA2 DNA repair associated (BRCA2), RB transcriptional corepressor 1 (RB1), and inositol polyphosphate-4-phosphatase type II B (INPP4B). Additionally, JARID2 expression was regulated by the obesity-associated adipokine leptin via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the breast cancer microenvironment. Analysis of various online databases also indicated that JARID2/MTA1 was associated with a poor prognosis of breast cancer. CONCLUSION: Our data indicated that JARID2 promoted breast tumorigenesis and development, confirming JARID2 as a target for cancer treatment.

摘要

背景:含有Jumonji C(JmjC)结构域的蛋白质参与肿瘤发生和癌症进展。然而,这种作用的潜在机制仍知之甚少。我们的目的是研究Jumonji和含AT丰富相互作用结构域2(JARID2)——一种JmjC家族蛋白——在乳腺癌中的作用,以及它与肥胖的潜在关联。 方法:采用免疫组织化学、癌症基因组图谱、基因表达综合数据库等分析JARID2在乳腺癌细胞中的表达。通过生长曲线、5-乙炔基-2'-脱氧尿苷(EdU)、集落形成和细胞侵袭实验检测JARID2是否影响乳腺癌细胞的增殖和侵袭。基于球状体形成的实验和在NOD/SCID小鼠中的异种肿瘤移植用于研究JARID2与乳腺癌干性之间的关联。利用RNA测序、京都基因与基因组百科全书和基因集富集分析来确定JARID2参与的细胞过程。进行免疫亲和纯化和银染质谱分析以寻找可能与JARID2相互作用的蛋白质。结果通过共免疫沉淀和谷胱甘肽S-转移酶(GST)下拉实验进一步验证。使用染色质免疫沉淀(ChIP)测序,我们寻找JARID2和转移相关蛋白1(MTA1)共同调控的靶基因;结果通过ChIP-PCR、定量ChIP(qChIP)和ChIP-reChIP分析进行验证。采用共培养实验探索乳腺癌细胞与脂肪细胞之间的相互作用。 结果:在本研究中,我们发现JARID2在包括乳腺癌在内的多种癌症中高表达。JARID2促进乳腺癌细胞的糖酵解、脂质代谢、增殖、侵袭和干性。此外,JARID2与核小体重塑和去乙酰化酶(NuRD)复合物发生物理相互作用,转录抑制一系列肿瘤抑制基因,如BRCA2 DNA修复相关蛋白(BRCA2)、RB转录共抑制因子1(RB1)和II B型肌醇多磷酸-4-磷酸酶(INPP4B)。此外,在乳腺癌微环境中,JARID2的表达受肥胖相关脂肪因子瘦素通过Janus激酶2/信号转导和转录激活因子3(JAK2/STAT3)途径的调控。对各种在线数据库的分析还表明,JARID2/MTA1与乳腺癌的不良预后相关。 结论:我们的数据表明JARID2促进乳腺肿瘤发生和发展,证实JARID2可作为癌症治疗的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/5228d36a96a0/CAC2-43-1117-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/1a942d629757/CAC2-43-1117-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/81f35b8874b6/CAC2-43-1117-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/19afeeb18bcb/CAC2-43-1117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/9d36244169a1/CAC2-43-1117-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/dcdec9b2d769/CAC2-43-1117-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/3168741f999e/CAC2-43-1117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/d9b79cfad6e9/CAC2-43-1117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/5228d36a96a0/CAC2-43-1117-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/1a942d629757/CAC2-43-1117-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/81f35b8874b6/CAC2-43-1117-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/19afeeb18bcb/CAC2-43-1117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/9d36244169a1/CAC2-43-1117-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/dcdec9b2d769/CAC2-43-1117-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/3168741f999e/CAC2-43-1117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/d9b79cfad6e9/CAC2-43-1117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb24/10565380/5228d36a96a0/CAC2-43-1117-g007.jpg

相似文献

[1]
JARID2 coordinates with the NuRD complex to facilitate breast tumorigenesis through response to adipocyte-derived leptin.

Cancer Commun (Lond). 2023-10

[2]
Transcription factor ZEB1 coordinating with NuRD complex to promote oncogenesis through glycolysis in colorectal cancer.

Front Pharmacol. 2024-8-13

[3]
The Homeotic Protein SIX3 Suppresses Carcinogenesis and Metastasis through Recruiting the LSD1/NuRD(MTA3) Complex.

Theranostics. 2018-1-1

[4]
Regulation of the MIR155 host gene in physiological and pathological processes.

Gene. 2012-12-14

[5]
microRNA-206 Suppresses Cholangiocarcinoma Cell Growth and Invasion by Targeting Jumonji AT-Rich Interactive Domain 2.

Dig Dis Sci. 2022-7

[6]
Adipocyte-derived IL-6 and leptin promote breast Cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression.

Cell Commun Signal. 2018-12-18

[7]
SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex.

Mol Cancer. 2018-4-6

[8]
Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling.

Life Sci. 2019-5-21

[9]
Knockdown of JARID2 inhibits the proliferation and invasion of ovarian cancer through the PI3K/Akt signaling pathway.

Mol Med Rep. 2017-9

[10]
Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation.

Clin Exp Metastasis. 2003

引用本文的文献

[1]
Adipocyte-specific Zeb1 downregulation remodels the tumor-associated adipose microenvironment to facilitate female breast cancer progression.

Nat Commun. 2025-7-1

[2]
DNA methylation patterns in breast cancer, paired benign tissue from ipsilateral and contralateral breast, and healthy controls.

Breast Cancer Res. 2025-6-11

[3]
N-acetyltransferase 10 promotes glioblastoma malignancy via mRNA stabilization of jumonji and AT-rich interaction domain containing 2.

J Biol Chem. 2025-4-25

[4]
Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment.

Mol Cancer. 2025-3-3

[5]
The IRF2-INPP4B Pathway Aggravates Acute Myeloid Leukemia.

Turk J Haematol. 2025-5-22

[6]
Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells.

Oncoimmunology. 2025-12

[7]
Glycerophosphodiester phosphodiesterase 1 mediates G3P accumulation for Eureka lemon resistance to citrus yellow vein clearing virus.

Hortic Res. 2024-10-11

[8]
Jumonji and AT-Rich Interacting Domain 2 (JARID2) exhibits a tumor-suppressive role in Oral Squamous Cell Carcinoma by modulating tumor progression and metastasis.

3 Biotech. 2024-12

[9]
Transcription factor ZEB1 coordinating with NuRD complex to promote oncogenesis through glycolysis in colorectal cancer.

Front Pharmacol. 2024-8-13

[10]
JARID2, a novel regulatory factor, promotes cell proliferation, migration, and invasion in oral squamous cell carcinoma.

BMC Cancer. 2024-7-3

本文引用的文献

[1]
The evolving view of thermogenic fat and its implications in cancer and metabolic diseases.

Signal Transduct Target Ther. 2022-9-16

[2]
Breast cancer: an up-to-date review and future perspectives.

Cancer Commun (Lond). 2022-10

[3]
Hallmarks of Cancer: New Dimensions.

Cancer Discov. 2022-1

[4]
Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020.

Cancer Commun (Lond). 2021-11

[5]
JARID2 promotes stemness and cisplatin resistance in non-small cell lung cancer via upregulation of Notch1.

Int J Biochem Cell Biol. 2021-9

[6]
Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function.

Drug Resist Updat. 2021-7

[7]
Planning for tomorrow: global cancer incidence and the role of prevention 2020-2070.

Nat Rev Clin Oncol. 2021-10

[8]
CUL4B Promotes Breast Carcinogenesis by Coordinating with Transcriptional Repressor Complexes in Response to Hypoxia Signaling Pathway.

Adv Sci (Weinh). 2021-5

[9]
Metabolic pathways in obesity-related breast cancer.

Nat Rev Endocrinol. 2021-6

[10]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索