Suppr超能文献

通过全基因组测序分析探索多药耐药肺炎克雷伯菌的抗菌药物耐药机制。

Exploring multidrug-resistant Klebsiella pneumoniae antimicrobial resistance mechanisms through whole genome sequencing analysis.

机构信息

Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.

Clinical Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, Daxue Road, Tongshan District, Xuzhou, 221002, Jiangsu, China.

出版信息

BMC Microbiol. 2023 Sep 2;23(1):245. doi: 10.1186/s12866-023-02974-y.

Abstract

BACKGROUND

Antibiotic-resistant Klebsiella pneumoniae has emerged as a critical public health threat worldwide. Understanding the antimicrobial resistance mechanisms of multidrug-resistant K. pneumoniae (MDR-Kp) and its prevalence in time and space would provide clinical significance for managing pathogen infection.

METHODS

Eighteen clinical MDR-Kp strains were analyzed by whole genome sequencing (WGS), and the antimicrobial resistance genes and associated resistance mechanisms were compared with results obtained from the conventional microbiological test (CMT). The sequence homology across strains in our study and those previously collected over time from a wide geographical region was assessed by phylogenetic analysis.

RESULTS

MDR-Kp strains were collected from eighteen patients who had received empirical treatment before strain collection, with sputum (83.3%, 15/18) being the primary source of clinical samples. The commonly received treatments include β-lactamase inhibitors (55.6%, 10/18) and carbapenems (50%, 9/18). Using CMT, we found that all 18 strains were resistant to aztreonam and ciprofloxacin, while 14 (77.8%) showed resistance to carbapenem. Polymyxin B and tigecycline were the only antibiotics to which MDR-Kp strains were sensitive. A total of 42 antimicrobial resistance mechanisms were identified by WGS, surpassing the 40 detected by the conventional method, with 25 mechanisms shared between the two techniques. Despite a 100% accuracy rate of WGS in detecting penicillin-resistant strains, the accuracy in detecting cephalosporin-resistant strains was only at 60%. Among all resistance genes identified by WGS, Klebsiella pneumoniae carbapenemase-2 (KPC-2) was present in all 14 carbapenem-resistant strains. Phenotypic analysis indicated that sequence type (ST) 11 isolates were the primary cause of these MDR-Kp infections. Additionally, phylogenic clustering analysis, encompassing both the clinical and MDR-Kp strains previously reported in China, revealed four distinct subgroups. No significant difference was observed in the sequence homology between K. pneumoniae strains in our study and those previously collected in East China over time.

CONCLUSION

The application of WGS in identifying potential antimicrobial-resistant genes of MDR-Kp has demonstrated promising clinical significance. Comprehensive genomic information revealed by WGS holds the promise of guiding treatment decisions, enabling surveillance, and serving as a crucial asset in understanding antibiotic resistance.

摘要

背景

具有抗药性的肺炎克雷伯菌已成为全球范围内严重的公共卫生威胁。了解多药耐药肺炎克雷伯菌(MDR-Kp)的抗菌药物耐药机制及其在时间和空间上的流行情况,将为管理病原体感染提供临床意义。

方法

对 18 株临床 MDR-Kp 菌株进行全基因组测序(WGS)分析,并将抗菌药物耐药基因及其相关耐药机制与常规微生物学检测(CMT)结果进行比较。通过系统发育分析评估本研究中菌株以及随时间从广泛地理区域收集的先前菌株之间的序列同源性。

结果

MDR-Kp 菌株从 18 名接受经验性治疗后采集标本的患者中采集,其中痰液(83.3%,15/18)是主要的临床样本来源。常见的治疗方法包括β-内酰胺酶抑制剂(55.6%,10/18)和碳青霉烯类(50%,9/18)。使用 CMT,我们发现 18 株均对氨曲南和环丙沙星耐药,而 14 株(77.8%)对碳青霉烯类耐药。多粘菌素 B 和替加环素是 MDR-Kp 菌株唯一敏感的抗生素。WGS 共鉴定出 42 种抗菌药物耐药机制,超过常规方法检测到的 40 种,两种方法有 25 种机制共享。尽管 WGS 检测青霉素耐药株的准确率为 100%,但检测头孢菌素耐药株的准确率仅为 60%。WGS 鉴定的所有耐药基因中,肺炎克雷伯菌碳青霉烯酶-2(KPC-2)均存在于 14 株碳青霉烯类耐药株中。表型分析表明,ST11 分离株是这些 MDR-Kp 感染的主要原因。此外,包括中国以前报告的临床和 MDR-Kp 菌株在内的系统发育聚类分析显示了 4 个不同的亚群。我们研究中的肺炎克雷伯菌菌株与中国东部随时间收集的菌株之间的序列同源性没有显著差异。

结论

WGS 用于鉴定 MDR-Kp 潜在抗菌药物耐药基因具有重要的临床意义。WGS 提供的综合基因组信息有望指导治疗决策,进行监测,并为了解抗生素耐药性提供重要资源。

相似文献

6
Emergence of mcr-1 gene and carbapenemase-encoding genes among colistin-resistant Klebsiella pneumoniae clinical isolates in Jordan.
J Infect Public Health. 2022 Aug;15(8):922-929. doi: 10.1016/j.jiph.2022.07.005. Epub 2022 Jul 19.
7
Molecular insights of Carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples.
J Infect Public Health. 2021 Jan;14(1):131-138. doi: 10.1016/j.jiph.2020.09.018. Epub 2020 Nov 21.
9
Metagenomics next-generation sequencing (mNGS) reveals emerging infection induced by Klebsiella pneumoniaeniae.
Int J Antimicrob Agents. 2024 Feb;63(2):107056. doi: 10.1016/j.ijantimicag.2023.107056. Epub 2023 Dec 9.

引用本文的文献

1
Epidemiological Genomics of Klebsiella pneumoniae isolates from hospitals across Colombia.
NPJ Antimicrob Resist. 2025 Jul 21;3(1):64. doi: 10.1038/s44259-025-00127-x.
2
Invasive Klebsiella Syndrome With Multiple Liver and Renal Abscesses.
Cureus. 2025 May 13;17(5):e84052. doi: 10.7759/cureus.84052. eCollection 2025 May.
3
Drug susceptibility of uropathogens isolated from patients treated at the Mazovian Specialized Hospital in Radom.
Acta Biochim Pol. 2025 Feb 27;72:14082. doi: 10.3389/abp.2025.14082. eCollection 2025.
5
Disruption of zinc homeostasis reverses tigecycline resistance in .
Front Cell Infect Microbiol. 2025 Feb 12;15:1458945. doi: 10.3389/fcimb.2025.1458945. eCollection 2025.
6
Detection of antimicrobial resistance in in South China using whole-genome sequencing.
Front Microbiol. 2025 Jan 7;15:1532743. doi: 10.3389/fmicb.2024.1532743. eCollection 2024.
7
Transcriptomic analysis reveals pathways underlying the multi-antibiotic resistance of Klebsiella pneumoniae.
IET Syst Biol. 2025 Jan-Dec;19(1):e12112. doi: 10.1049/syb2.12112. Epub 2024 Dec 17.
8
Phenotypic and genomic characterization of ST11-K1 CR-hvKP with highly homologous -bearing plasmids in China.
mSystems. 2024 Dec 17;9(12):e0110124. doi: 10.1128/msystems.01101-24. Epub 2024 Nov 18.
9
Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria.
World J Microbiol Biotechnol. 2024 Oct 19;40(11):357. doi: 10.1007/s11274-024-04169-7.
10
Spatial analysis of murine microbiota and bile acid metabolism during amoxicillin treatment.
Cell Rep. 2024 Aug 27;43(8):114572. doi: 10.1016/j.celrep.2024.114572. Epub 2024 Aug 7.

本文引用的文献

1
Klebsiella pneumoniae vaccine studies in animal models.
Biologicals. 2023 May;82:101678. doi: 10.1016/j.biologicals.2023.101678. Epub 2023 Apr 29.
3
Clinical metagenomic sequencing for rapid diagnosis of pneumonia and meningitis caused by .
World J Clin Cases. 2021 Sep 16;9(26):7693-7703. doi: 10.12998/wjcc.v9.i26.7693.
4
ResFinder 4.0 for predictions of phenotypes from genotypes.
J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500. doi: 10.1093/jac/dkaa345.
6
Population genomics of Klebsiella pneumoniae.
Nat Rev Microbiol. 2020 Jun;18(6):344-359. doi: 10.1038/s41579-019-0315-1. Epub 2020 Feb 13.
8
Antimicrobial Susceptibility Testing for Polymyxins: Challenges, Issues, and Recommendations.
J Clin Microbiol. 2019 Mar 28;57(4). doi: 10.1128/JCM.01390-18. Print 2019 Apr.
9
Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection.
Annu Rev Pathol. 2019 Jan 24;14:319-338. doi: 10.1146/annurev-pathmechdis-012418-012751. Epub 2018 Oct 24.
10
Non-active site mutation (Q123A) in New Delhi metallo-β-lactamase (NDM-1) enhanced its enzyme activity.
Int J Biol Macromol. 2018 Jun;112:1272-1277. doi: 10.1016/j.ijbiomac.2018.02.091. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验