Suppr超能文献

基于机器视觉的商业养殖场羊自动识别与饮水行为监测。

Machine vision-based automatic lamb identification and drinking activity in a commercial farm.

机构信息

Precision livestock farming (PLF) Lab., Agricultural Engineering Institute, Agricultural Research Organization (A.R.O.) - Volcani Institute, 68 Hamaccabim Road, P.O.B. 15159, Rishon Lezion 7505101, Israel; Dept. of Information Systems, Haifa University, 199 Abba Khoushy Ave, Haifa 3498838, Israel.

Dept. of Information Systems, Haifa University, 199 Abba Khoushy Ave, Haifa 3498838, Israel.

出版信息

Animal. 2023 Sep;17(9):100923. doi: 10.1016/j.animal.2023.100923. Epub 2023 Jul 27.

Abstract

Using ear tags, farmers can track specific data for individual lambs such as age, medical records, body condition scores, genetic abnormalities; to make data-based decisions. However, automatic reading of ear tags using Radio Frequency Identification requires (a) an antenna, (b) a reader, (c) comparable reading standards; consequently, such a system can be expensive and impractical for a large group of lambs, especially in situations where animals are not required to have a compulsory Electronic identification, contrary to the case in Europe, where it is mandatory. Therefore, this paper proposes a machine vision system for indoor animals to identify individual lambs using existing ear tags. Using a camera that is installed such that the trough is visible, the drinking behaviour of the lambs can be automatically monitored. Data from different lamb groups in two different pens were collected. The identification algorithm includes a number of steps: (1) Detecting the lambs' face, and its ear tags in each image; (2) Cropping each ear tag image and discerning the digits on it to obtain the tag number; (3) Tracking each lamb throughout the visit using a tracking algorithm; (4) Recovering the ear tag number using an algorithm that incorporates a list of the ear tag numbers of the lambs in each pen, and the predictions for each lamb in each frame. The You Only Look Once deep learning object detection algorithm was applied to locate and localise the lamb's face and the digits in an image. The models' datasets contained 1 160 and 2 165 images for the training set, and 325 and 616 images for the validation set, respectively. The algorithm output includes the identity of each lamb that came to drink, and its duration. The identification system resulted in a total accuracy of 93% for the data tested, which consisted of approximately 900 visits to the drinking stations, and was collected in real time in a natural environment. The ground truth of each video of a visit was obtained by human observation by studying the video. We checked if there was indeed a visit to the water trough and if so we registered the ear tag number of each lamb whose head was above the water trough. Thus, identifying lambs in a commercial pen using a relatively inexpensive and easily installed system consisting of a RGB camera and a computer vision-based algorithm has potential for farm management.

摘要

农民可以使用耳标追踪每只羔羊的特定数据,如年龄、医疗记录、身体状况评分、遗传异常等,以便做出基于数据的决策。然而,使用射频识别自动读取耳标需要 (a) 天线,(b) 读取器,(c) 可比的读取标准;因此,对于大量的羔羊来说,这样的系统可能既昂贵又不切实际,尤其是在不需要强制性电子识别的情况下,与欧洲的情况相反,在欧洲,电子识别是强制性的。因此,本文提出了一种用于室内动物的机器视觉系统,该系统使用现有的耳标来识别个体羔羊。通过安装一个能够看到食槽的摄像头,可以自动监测羔羊的饮水行为。从两个不同畜栏的不同羔羊群体中收集数据。识别算法包括以下几个步骤:(1) 检测图像中羔羊的面部及其耳标;(2) 裁剪每个耳标图像并识别上面的数字以获取耳标号;(3) 使用跟踪算法跟踪每个羔羊在整个访问过程中的位置;(4) 使用一种算法恢复耳标号码,该算法结合了每个畜栏中羔羊的耳标号码列表以及每帧中每个羔羊的预测结果。应用了 You Only Look Once 深度学习目标检测算法来定位和定位图像中羔羊的面部和数字。模型数据集包含 1 160 张和 2 165 张图像用于训练集,325 张和 616 张图像用于验证集。算法输出包括每个来饮水的羔羊的身份及其持续时间。识别系统对测试数据的总准确率为 93%,其中包括大约 900 次对饮水站的访问,并且是在自然环境中实时收集的。通过观察视频获得每次访问的视频的真实情况。我们检查是否确实有羔羊去饮水槽,如果有,我们会记录头在饮水槽上方的每只羔羊的耳标号。因此,使用由 RGB 摄像机和基于计算机视觉的算法组成的相对廉价且易于安装的系统在商业畜栏中识别羔羊具有农场管理的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验