Suppr超能文献

基于剂量组学对头颈部癌放疗患者味觉障碍的预测

Dosiomic-based prediction of dysgeusia in head & neck cancer patients treated with radiotherapy.

作者信息

Busato Fabio, Fiorentin Davide, Bettinelli Andrea, Anile Giuseppe, Ghi Maria Grazia, Scaggion Alessandro, Dusi Francesca, Paiusco Marta, Ferrari Marco, Nicolai Piero, Marturano Francesca

机构信息

Radiotherapy Unit, Veneto Institute of Oncology - IOV IRCCS, Padova, Italy; Department of Radiation Oncology, Abano Terme Hospital, Padova, Italy.

Medical Physics Department, Veneto Institute of Oncology - IOV IRCCS, Padova, Italy.

出版信息

Radiother Oncol. 2023 Nov;188:109896. doi: 10.1016/j.radonc.2023.109896. Epub 2023 Sep 1.

Abstract

PURPOSE

To investigate the potential of dosiomics in predicting radiotherapy-induced taste distortion (dysgeusia) in head & neck (H&N) cancer.

METHODS

A cohort of 80 H&N cancer patients treated with radical or adjuvant radiotherapy and with a follow-up of at least 24 months was enrolled. Treatment information, as well as tobacco and alcohol consumption were also collected. The whole tongue was manually delineated on the planning CT and mapped to the dose map retrieved from the treatment planning system. For every patient, 6 regions of the tongue were examined; for each of them, 145 dosiomic features were extracted from the dose map and fed to a logistic regression model to predict the grade of dysgeusia at follow-up, with and without including clinical features. A mean dose-based model was considered for reference.

RESULTS

Both dosiomics and mean dose models achieved good prediction performance for acute dysgeusia with AUC up to 0.88. For the dosiomic model, the central and anterior ⅔ regions of the tongue were the most predictive. For all models, a gradual reduction in the performance was observed at later times for chronic dysgeusia prediction, with higher values for dosiomics. The inclusion of smoke and alcohol habits did not improve model performances.

CONCLUSION

The dosiomic analysis of the dose to the tongue identified features able to predict acute dysgeusia. Dosiomics resulted superior to the conventional mean dose-based model for chronic dysgeusia prediction. Larger, prospective studies are needed to support these results before integrating dosiomics in radiotherapy planning.

摘要

目的

探讨剂量学在预测头颈部(H&N)癌放疗引起的味觉畸变(味觉障碍)方面的潜力。

方法

纳入80名头颈部癌患者组成的队列,这些患者接受了根治性或辅助性放疗,且随访至少24个月。还收集了治疗信息以及烟草和酒精消费情况。在计划CT上手动勾勒出整个舌头,并将其映射到从治疗计划系统检索到的剂量图上。对每位患者,检查舌头的6个区域;对每个区域,从剂量图中提取145个剂量学特征,并将其输入逻辑回归模型,以预测随访时味觉障碍的等级,模型中分别纳入和不纳入临床特征。以基于平均剂量的模型作为参考。

结果

剂量学模型和平均剂量模型对急性味觉障碍均具有良好的预测性能,曲线下面积(AUC)高达0.88。对于剂量学模型,舌头的中央和前三分之二区域预测性最强。对于所有模型,在预测慢性味觉障碍时,后期性能逐渐下降,剂量学模型的值更高。纳入吸烟和饮酒习惯并未改善模型性能。

结论

对舌头剂量的剂量学分析确定了能够预测急性味觉障碍的特征。在慢性味觉障碍预测方面,剂量学分析结果优于传统的基于平均剂量的模型。在将剂量学分析纳入放射治疗计划之前,需要进行更大规模的前瞻性研究来支持这些结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验