Wang Jing, Liu Yusi, Chen Li, Liu Yaxin, Mi Ke, Gao Shuang, Mao Jian, Zhang Hui, Sun Yanling, Ma Zhenxing
School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China.
State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
Sci Total Environ. 2023 Dec 10;903:166603. doi: 10.1016/j.scitotenv.2023.166603. Epub 2023 Sep 2.
A refined classification of aerosol types is essential to identify and control air pollution sources. This study focused on improving the resolution and accuracy of aerosol optical depth (AOD) and further refining the classification of aerosol types in China. We validated the accuracy of the AOD acquired using the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) and Copernicus Atmosphere Monitoring Service (CAMS) by comparing it with that acquired using from the Aeronet Robotic Network (AERONET). We simulated the AOD with high spatial resolution and accuracy based on the extremely randomized trees (ERT), adaptive boosting (AdaBoost), and gradient boosting decision trees (GBDT) models and identified aerosol types based on the Angstrom Exponent (AE) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the calibrated AOD. The results showed that CAMS overestimates AOD (21.4 %) and MERRA2 underestimates AOD (-17.3 %). Among the three machine learning models, the ERT model performed best, with a determination coefficient (R) of 0.825 and the root-mean-square error (RMSE) of 0.174. Biomass burning/urban-industrial aerosols dominated China, with the largest contributions to southern, eastern, and central China in spring and summer. Clean continental aerosols contributed the most to southwestern China in fall and winter, whereas desert dust aerosols contributed the most to northwestern and eastern China in spring.
气溶胶类型的精细分类对于识别和控制空气污染来源至关重要。本研究着重于提高气溶胶光学厚度(AOD)的分辨率和准确性,并进一步细化中国气溶胶类型的分类。我们通过将使用现代时代回顾性分析研究与应用版本2(MERRA2)和哥白尼大气监测服务(CAMS)获取的AOD与使用Aeronet机器人网络(AERONET)获取的AOD进行比较,验证了其准确性。我们基于极端随机树(ERT)、自适应增强(AdaBoost)和梯度提升决策树(GBDT)模型,以高空间分辨率和准确性模拟了AOD,并根据中分辨率成像光谱仪(MODIS)的埃斯特朗指数(AE)和校准后的AOD识别了气溶胶类型。结果表明,CAMS高估了AOD(21.4%),而MERRA2低估了AOD(-17.3%)。在这三种机器学习模型中,ERT模型表现最佳,决定系数(R)为0.825,均方根误差(RMSE)为0.174。生物质燃烧/城市工业气溶胶在中国占主导地位,在春季和夏季对中国南部、东部和中部的贡献最大。清洁大陆气溶胶在秋季和冬季对中国西南部的贡献最大,而沙尘气溶胶在春季对中国西北部和东部的贡献最大。