Louis Gwennaëlle, Cherry Pauline, Michaux Catherine, Rahuel-Clermont Sophie, Dieu Marc, Tilquin Françoise, Maertens Laurens, Van Houdt Rob, Renard Patricia, Perpete Eric, Matroule Jean-Yves
Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
Laboratoire de Chimie Physique des Biomolécules, Namur Research Institute for Life Sciences (NARILIS) and Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium.
J Biol Chem. 2023 Oct;299(10):105207. doi: 10.1016/j.jbc.2023.105207. Epub 2023 Sep 1.
Chemotaxis is a widespread strategy used by unicellular and multicellular living organisms to maintain their fitness in stressful environments. We previously showed that bacteria can trigger a negative chemotactic response to a copper (Cu)-rich environment. Cu ion toxicity on bacterial cell physiology has been mainly linked to mismetallation events and reactive oxygen species (ROS) production, although the precise role of Cu-generated ROS remains largely debated. Here, using inductively coupled plasma optical emission spectrometry on cell fractionates, we found that the cytoplasmic Cu ion content mirrors variations of the extracellular Cu ion concentration. ROS-sensitive fluorescent probe and biosensor allowed us to show that the increase of cytoplasmic Cu ion content triggers a dose-dependent oxidative stress, which can be abrogated by superoxide dismutase and catalase overexpression. The inhibition of ROS production in the cytoplasm not only improves bacterial growth but also impedes Cu chemotaxis, indicating that ROS derived from cytoplasmic Cu ions mediate the control of bacterial chemotaxis to Cu. We also identified the Cu chemoreceptor McpR, which binds Cu ions with low affinity, suggesting a labile interaction. In addition, we demonstrate that the cysteine 75 and histidine 99 within the McpR sensor domain are key residues in Cu chemotaxis and Cu coordination. Finally, we discovered that in vitro both Cu(I) and Cu(II) ions modulate McpR conformation in a distinct manner. Overall, our study provides mechanistic insights on a redox-based control of Cu chemotaxis, indicating that the cellular redox status can play a key role in bacterial chemotaxis.
趋化作用是单细胞和多细胞生物广泛采用的一种策略,用于在压力环境中维持自身的适应性。我们之前表明,细菌能够对富含铜(Cu)的环境触发负趋化反应。尽管铜产生的活性氧(ROS)的确切作用仍存在很大争议,但铜离子对细菌细胞生理的毒性主要与金属错配事件和活性氧产生有关。在这里,我们使用电感耦合等离子体发射光谱法对细胞分级分离物进行分析,发现细胞质中的铜离子含量反映了细胞外铜离子浓度的变化。对ROS敏感的荧光探针和生物传感器使我们能够表明,细胞质中铜离子含量的增加会引发剂量依赖性的氧化应激,而过表达超氧化物歧化酶和过氧化氢酶可以消除这种应激。抑制细胞质中的ROS产生不仅能改善细菌生长,还会阻碍对铜的趋化作用,这表明细胞质中铜离子产生的ROS介导了细菌对铜的趋化作用的控制。我们还鉴定出了铜化学感受器McpR,它与铜离子的结合亲和力较低,表明存在不稳定的相互作用。此外,我们证明了McpR传感器结构域内的半胱氨酸75和组氨酸99是铜趋化作用和铜配位中的关键残基。最后,我们发现,在体外,Cu(I)和Cu(II)离子均以独特的方式调节McpR的构象。总体而言,我们的研究为基于氧化还原的铜趋化作用控制提供了机制性见解,表明细胞的氧化还原状态在细菌趋化作用中可能起关键作用。