Département de Génie logiciel, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montréal, Québec, Canada.
J Alzheimers Dis. 2023;95(3):855-868. doi: 10.3233/JAD-220711.
Alzheimer's disease (AD) is a progressive neurodegenerative disease that results in cognitive decline, dementia, and eventually death. Diagnosing early signs of AD can help clinicians to improve the quality of life.
We developed a non-invasive approach to help neurologists and clinicians to distinguish probable AD patients and healthy controls (HC).
The patients' gaze points were followed based on the words they used to describe the Cookie Theft (CT) picture description task. We hypothesized that the timing of words enunciation aligns with the participant's eye movements. The moments that each word was spoken were then aligned with specific regions of the image. We then applied machine learning algorithms to classify probable AD and HC. We randomly selected 60 participants (30 AD and 30 HC) from the Dementia Bank (Pitt Corpus).
Five main classifiers were applied to different features extracted from the recorded audio and participants' transcripts (AD and HC). Support vector machine and logistic regression had the highest accuracy (up to 80% and 78.33%, respectively) in three different experiments.
In conclusion, point-of-gaze can be applied as a non-invasive and less expensive approach compared to other available methods (e.g., eye tracker devices) for early-stage AD diagnosis.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,可导致认知能力下降、痴呆,最终导致死亡。早期发现 AD 的迹象可以帮助临床医生提高生活质量。
我们开发了一种非侵入性方法,帮助神经科医生和临床医生区分可能的 AD 患者和健康对照组(HC)。
根据患者描述“Cookie Theft(CT)”图片描述任务的词语,跟踪患者的注视点。我们假设,词语的发音时间与参与者的眼球运动一致。然后,将每个单词的发音时间与图像的特定区域对齐。然后,我们应用机器学习算法对可能的 AD 和 HC 进行分类。我们从痴呆症银行(Pitt Corpus)中随机选择了 60 名参与者(30 名 AD 和 30 名 HC)。
五种主要的分类器应用于从记录的音频和参与者的抄本中提取的不同特征(AD 和 HC)。在三个不同的实验中,支持向量机和逻辑回归的准确率最高(分别高达 80%和 78.33%)。
总之,与其他可用方法(例如眼动追踪设备)相比,注视点可以作为一种非侵入性且成本较低的方法,用于早期 AD 的诊断。